
Designing Mobile Applications for the Enterprise 
Eric Giguère, iAnywhere Solutions — a Sybase company 

As more users go mobile, organizations are discovering that it's a challenge to build 
and deploy applications for the wide variety of devices in use. Occasionally 
connected devices (like Palm handhelds) need to store and process data offline 
while the device is away from the network; always-connected devices (like 
cellphones) have access to data but can suffer resource constraints. Connection in 
the second instance takes place via either a dialup (a circuit-switched connection in 
standard 2nd generation digital and 1st generation analogue networks) at low 
speed, or a packet-switched connection (enhanced 2nd generation/3rd generation) 
that provides an 'always connected' model without the need for dialup. 
 
This session paper explores these different connectivity models, looking at issues 
like synchronization, conflict detection and resolution, and security. 
 

Portions of the material in this paper cover similar ground to Chapter 
7 of my book, Palm Database Programming: The Complete 
Developer's Guide, published in 1999 by John Wiley & Sons. 

What is a Mobile Application? 
There are many definitions of what constitutes a mobile application. For the 
purposes of our discussion, we define it as follows: an application is mobile if it runs 
on a portable computing device and is either always or occasionally connected to a 
network. This definition includes applications that run on notebook computers, 
personal digital assistants (PDAs) and cellphones, among others. It also implies 
some form of client-server architecture, where the application running on the 
device is a client of some service made available through the network. 
 
What particularly interest us in this paper are enterprise mobile applications, which 
are basically mobile applications that are developed for and deployed by a 
corporation, potentially to thousands of users. Deployment issues aside (and not to 
trivialize them — the appeal of thin-client, browser-based applications is to reduce 
deployment costs), these types of applications need to access and share the same 
back office data that other, non-mobile applications use. This means access to the 
database and application servers holding the corporation's data and business logic. 

Connectivity Models 
Access to the back office is performed through some kind of network connection. 
However, the connection does not necessarily have to exist permanently — some 
applications can be written to work with occasional or sporadic network 
connectivity. It is useful then to distinguish three different connectivity models 
when describing how an application connects to its server component: 
 

Ø In the always connected model, the application can't function at all 
without the network connection. In other words, the server is critical to 
the proper execution of the application. A typical example of this is an 
application running in a cellphone-based HDML/WML microbrowser, or 
any kind of thin-client application. While it's true that these devices all 
have caches and can function to some degree without a connection, 
cache size is limited, the user doesn't have much control over it, and 
applications must be carefully architected to work without a server 
component, which also means the device has to support some kind of 
scripting language (like WMLScript). 



Ø In the always available model, the application expects a network 
connection to be available, but can still function when that connection is 
unavailable. This model can also be referred to as the occasionally 
disconnected model. The server component is important, but not 
critical. If your service personnel are out in the field, for example, they 
could easily go outside the wireless coverage area when visiting rural 
customers (or even while inside certain buildings), but they still need to 
be able to access and enter data. 

Ø In the occasionally connected model, the application works primarily in 
an offline mode, only occasionally connecting to the network, usually on 
demand by the user or at regularly scheduled times. The server piece is 
somewhat optional. The classic example of this is Palm synchronization, 
of course, but even a notebook computer follows this model when it's 
disconnected from the corporate network. 

 
Another way to compare these models is to ask yourself where the data resides. If 
the data is completely stored on a remote server, then you're using the always 
connected model, because you need a network connection to get to the data. If the 
data is remote but you have a local cache for failover purposes, you're using the 
always available model. Finally, if the primary data source for your application is 
local to the device, you're using the occasionally connected model. 
 
It's important to be aware of which model your application requires. There are no 
real hard rules: the developer has to decide which model is appropriate based on 
the expected use of the application and the capabilities of the device. It may even 
make sense to have two different versions of the same application, each using a 
different connectivity model. However, it is usually harder to change an always 
connected application into an occasionally connected application than the other way 
around. (If you presume that a connection is always available, you won't 
necessarily worry about data caching and related issues.). Choosing the right model 
at the beginning of development is therefore critical. 

Data Synchronization 
No matter which model you're using, at some point your application is going to 
have to perform some kind of data synchronization. Data synchronization simply 
refers to the exchange and transformation of data between two applications 
maintaining separate data stores. Note that I'm using "application" in a very 
general sense here — a database server can be considered an application for these 
purposes. 
 
Data synchronization is most important for the always available and occasionally 
connected models, since without a network connection the client and server pieces 
can't notify each other of changes as they occur. But even the always connected 
model has to deal with synchronization issues, because there's always some kind of 
time delay involved that can cause conflicts when data is updated by different 
users. You might think that locking the data a client is going to modify is a simple 
solution, but it rarely works in practice — what if the user locks some important 
data and then goes on vacation for a week? 
 
And then there are transaction issues. Many changes to data are atomic in nature, 
such that if one of the changes fails, none of the changes must succeed. This is 
referred to as rolling back the changes. If all the changes succeed, on the other 
hand, they are committed and made permanent. Transactions ensure the integrity 
of the data. 
 
Synchronization isn't a new problem. Database vendors have been doing it for quite 
some time now with data replication, where data is 'mirrored' from one database 
to another for faster access and failure recovery. Replication is really a special case 



of synchronization, although it tends to be one-way, whereas data synchronization 
in general can be two-way (bi-directional). 
 
Note that in order to be synchronized, data doesn't have to be exchanged verbatim. 
In fact, there's usually some kind of data transformation that occurs, whether 
because the same data is stored in different ways, or only subsets of the data are 
used, or there's a need to encrypt or encode data (perhaps for localization 
purposes). 
 
Anyone who's tried to write their own synchronization code, however, will admit 
that it's hard to do, because you need to: 
 

Ø Understand and interface to different data stores 
Ø Develop a synchronization protocol appropriate for the network 

connection 
Ø Map the data from one data store to the other 
Ø Detect and report conflicts and errors 
Ø Interface with a transaction management service 

 
In particular, your synchronization code has to ensure the integrity of the data. 
Corrupting data can cripple or even disable other applications or users, let alone the 
problems it can cause with your own application. If you really want to write your 
own code, remember the cardinal rule: if in doubt, abort the synchronization and 
undo any changes you made. Better to have the application report that the 
synchronization failed, than to have bad data make its way into the back office. 
 
You'll no doubt find that in the long run, it's cheaper and simpler to buy someone 
else's synchronization solution than to code it yourself. Doing so lets you 
concentrate on the application, after all, and not on the synchronization protocol 
you're otherwise inventing. All the major database vendors (like Sybase and 
Oracle) have products for database synchronization, and there are companies like 
Pumatech that deal with application-level synchronization. 

Synchronization Strategies 
Even if you're using somebody else's synchronization solution, though, there's still 
work to do on your part. You have to decide on the synchronization strategies that 
are appropriate to your application. 

Data Tracking 
The first thing you need to concern yourself about is how any changes to data are 
tracked. There are two basic approaches: 
 

Ø Snapshot synchronization takes a complete 'snapshot' of the data. This 
is often used for the initial synchronization, but for a large amount of 
data that doesn't change very frequently, this generates too much 
network traffic. 

Ø Incremental synchronization sends only the changes since the last 
synchronization. This minimizes network traffic, but requires extra 
bookkeeping at both ends. 

 
The goal, of course, is to minimize the time required to perform synchronization. 

Data Partitioning 
Often, the client only needs to work with a subset of the data maintained by the 
server. This subsetting is referred to as partitioning. Tabular data, where data is 



organized into rows and columns, lends itself well to two kinds of partitioning that 
can be used independently of each other, or simultaneously: 
 

Ø Horizontal partitioning defines a subset of the rows. The idea is to 
include only the data required by the user of the application. For 
example, salespeople are likely to care only about their own customers 
contained within the corporate customer database. 

Ø Vertical partitioning defines a subset of the columns. Only the data 
required by the application is included — it is independent of the user. 
For example, the application may only require a few of the important 
columns in the customer database, not some of the more esoteric ones 
like tax codes and credit ratings. 

 
Horizontal partitioning is particularly important in the case of wireless applications, 
not only to minimize synchronization time, but also to avoid overwhelming a 
device's storage capacity. 

Conflict Detection and Resolution 
With multiple clients accessing and changing the same data, you'll soon have to 
deal with conflicting changes. The synchronization solution you're using will detect 
the conflicts, but it's up to you to resolve them. Conflict resolution rules are critical 
to preserving data integrity. Again, there are different approaches to conflict 
resolution: 
 

Ø Conflict avoidance is the simplest resolution policy: structuring the 
data such that no conflicts are possible. Clients can use data in a read-
only fashion, or else you can use partitioning to group data into mutually 
exclusive sets. 

Ø One side always wins is another simple policy to implement: when 
conflicts occur, either the client or the server always wins. Palm devices, 
for example, let you choose to have the handheld overwrite the desktop, 
or vice versa. 

Ø Both sides win seems like a good strategy, but it's usually better to 
choose another one. This strategy says that if a conflict occurs, make two 
copies of the data: one with the client changes and one with the server 
changes. The problem is that it rarely makes sense to have two different 
copies of the same data. 

Ø Custom conflict resolution strategies go beyond these three simpler 
ones. For example, it may make sense to define a resolution policy based 
on whom the user is — managers' changes would always override those 
of their subordinates. Or you can try to merge changes intelligently, 
perhaps even passing the conflict over to a human for arbitration. This 
last method is likely to be needed quite a lot to begin with, but that 
requirement will probably decrease over time with system improvements 
and better training and update co-ordination. 

 
Whenever a conflict occurs, though, you'll want to be able to notify users about it, 
or at least log it somewhere. If the client is the 'loser', it may need to rerun some 
calculations based on the updated data. 

Primary Key Assignment 
In database terminology, a primary key uniquely identifies a piece of data. For 
example, a list of employees would include an employee ID value as the primary 
key — using the name of the employee is a bad idea, since there could be more 
than one employee with the same name. 
 



Synchronization depends on the existence of primary keys (whether the data comes 
from a database or some other source) in order to track the data as it moves from 
the server to the client and back. The synchronization process will always include 
the primary keys in the data exchange. 
 
Generating a unique primary key is a problem when a client needs to create new 
data to store on the server. The two common techniques are: 
 

Ø Pre-generate primary key pools for each user. As the user creates 
new data, the primary keys are pulled from the pool. The pool gets 
replenished as part of the synchronization process if it's running low. Of 
course, if the pool is too small then the user won't be able to create new 
data until synchronization is performed. 

Ø Generate "globally unique" keys based on client-specific information. 
For example, a primary key for a customer ID could be generated by 
combining the customer's initials with their first order number (order 
numbers will generally be unique, if based on the order submitted to the 
company). 

 
Alternatively, in some cases the client can get away with letting the server assign 
primary key values. Simply incrementing the number, however, is a bad method, 
as this could result in the situation where a number of devices try to allocate the 
same number, all thinking it is unused. If keys are allocated in this fashion, then 
the server may need to change key values to keep data in order; this demonstrates 
the need for bi-directional communication, since those changes must be 
communicated back to the client. 

Security 
Security is always an issue with mobile applications, but especially in wireless 
communications over public data networks. Security is about more than just 
encrypting data; it's also about authenticating users — verifying that they are who 
they say they are. This "login" process is so basic that almost every application 
requires it, even if it all it means is prompting the user for a user ID and password. 
 
Ideally, of course, the security systems already in place in a corporation should 
automatically extend to include mobile applications, but this ideal expansion is not 
always possible. For example, the company may depend on virtual private 
networking (VPN) technology to provide remote computers with access to the 
corporate intranet. A VPN extends the corporate intranet out onto the Internet by 
encrypting all communications from the client to the intranet and otherwise 
blocking out non-authenticated clients. How do you then deal with devices with no 
VPN support? 
 
These and other problems are slowly being addressed by device manufacturers, but 
in the short term you may be forced to work within a less secure environment than 
you'd like. If you can't secure the client, place limits at the server end to limit any 
damage that might occur if security is breached. For example, the server should 
only have access to the resources (especially databases) it requires. And the server 
should avoid using administrator privileges when accessing those resources if at all 
possible. 
 
An interesting feature of many mobile devices is the ability to identify a device 
uniquely. The server, for example, can determine that a particular device is 
connecting to it. You may be tempted to use this information to associate a user or 
role with the device automatically, but don't abandon user authentication 
completely. Portable devices are easily lost or stolen, or (in the worst case) may 
even be cloned, so even hard-coded IDs may be duplicated. This is certainly the 
case with mobile phones, and a possibility with other devices as well. And if the 



device uses a third-party gateway to access your site, consider authenticating the 
gateway as an added security measure. 
 
So, if you do use automatic role association, be sure to provide a way to suspend a 
device's privileges quickly and easily upon notification of loss or theft. 

Emerging Standards 
As more developers write mobile applications, standards are beginning to emerge. 
The particularly notable ones are: 
 

Ø WAP: The Wireless Application Protocol is an obvious set of standards for 
wireless thin-client communication, encompassing WAE, WSL, WTLS and 
WTP. Be aware, though, that when many people talk about WAP they're 
really just referring to WML. Some would argue that WML (and WAP) 
itself may be irrelevant in the years to come, superseded by XHTML Basic 
and other technologies closely based on existing Internet standards. 

Ø SOAP: The Simple Object Access Protocol is a way to invoke methods on 
objects (the definitions of "method" and "object" are quite arbitrary) 
using the HTTP protocol, with request and response information encoded 
using XML. It's basically a portable, network-independent way to do 
distributed computing, although it's not really a replacement for low-level 
remote procedure calls due to the communication and processing 
overhead involved. But by leveraging HTTP, SOAP calls can be made 
through firewalls and across non-IP networks, while the data is easily 
validated because it's XML. 

Ø SyncML: A consortium of companies defining portable data 
synchronization protocols, most of which are XML-based. They're 
expected to release their first specifications later this summer. 

Ø XHTML Basic: A distillation of XHTML (an XML-compliant form of HTML) 
for small devices. XHTML turns HTML into an XML language, while 
maintaining compatibility with existing HTML clients (provided that you 
follow some simple rules). XHTML Basic is a core set of XHTML 
functionality suitable for small devices. 

Ø Java 2 Micro Edition: A smaller virtual machine and stripped down and 
rewritten libraries are allowing Java to move back down to the client, 
making it possible to write end-to-end Java programs. 

 
You'll be sure to see other standards arrive as the marketplace focuses more 
attention on mobile application building. 

Summary 
Designing a good mobile application is not trivial: there's a lot to think about if you 
want to make it fit in with your existing data and applications. It involves leading 
edge and evolving technology and standards, and generally requires a lot of 
learning on the part of everyone involved. Understanding the issues presented here 
will make your job a bit easier, and save you from making critical design mistakes. 


