
Building 'Usable' WAP Applications

Luca Passani, Cell Network AS

Usability is a term that indicates the degree of user-friendliness of a system. A
usable system is one that lets its users complete tasks in a reasonably easy way.
Assessing the value of a system's user interface has become increasingly important
with the growth of computer use — so much so that there is a whole field of
computer science (Human-Computer Interaction, or HCI) that deals with building
usable systems.

Building usable WAP applications is not simple. Wireless devices have many
limitations, and the average user of a WAP application is not technically oriented
(and possibly not even used to the Internet). Finally, the interpretation of WML
varies greatly between devices from different vendors. This poses an extra
challenge to good usability.

If you're a web developer, you might think that this situation closely resembles the
browser war we're still witnessing on the Web. And you are right.

This paper looks into these issues in depth, and discusses methods for overcoming
some of the problems you'll encounter when attempting to code or convert
applications for use on a variety of different browsers. This is done with reference
to two particular microbrowser examples:

Ø The Nokia 7110
Ø The Phone.com UP.Browser

The paper assumes familiarity with the WAP architecture and WML programming.

Usability
For the purpose of this presentation, we can define usability as follows:

Usability refers to the ease with which users of an
application can perform the operations and complete the
tasks that the application is supposed to help them achieve.

If users perceive your application as being easy to use,
straightforward, and forgiving, then you have a usable
application.

Limitations of Wireless Devices
Let's review the limitations of WAP devices here:

Ø Small screens: In general, WAP devices are tiny. Those accustomed to
web browsers will find navigating with a WAP phone a real pain.

Ø Limited input facilities: Most wireless devices lack a keyboard that is
anything like a traditional QWERTY PC keyboard. Simple, mass-market,
consumer-class data input technology that does not depend on a
keyboard has yet to be invented.

Ø Limited processor power and memory: WAP browsers are simple and
unforgiving.

Ø Limited bandwidth: At this stage, WAP devices have very little
bandwidth available when compared to PCs. In Europe, users can count
on a speed of 9600 bps (bits per second) as of April 2000. The
introduction of GPRS may improve the situation slightly by the end of
2000.

Ø Lack of graphics: Or at least, very limited support for them. Icons and
graphics can go a long way towards helping the user in complicated
situations.

Ø Limited deck size: A deck can contain only a limited amount of
information.

These limitations have serious implications for the way you design your WAP
application.

WAP Users
WAP users are not sitting in front of a PC. They are on the move, on their way to a
meeting, or in a crowded train. Sometimes they're under pressure. Building usable
WAP systems is not straightforward, and goal when doing so should be to make it
as simple to use as possible. While this is true for any application, it's an absolute
must in the context of WAP. WAP users are subject to many distracting events in
the environment that surrounds them, and this adds to the input/output limitations
of WAP phones described above.

In three years, it is estimated that there will be half a billion WAP-enabled mobile
phones around. This means that potential WAP users will outnumber conventional
Internet users by far. One implication of this is that, in general, you cannot assume
that the users of your application are also conventional Internet users.

WML Interoperability Issues
WML delivers content and user interfaces across very different kinds of devices. The
various browser implementations render WML in different ways, and this will affect
the usability of our applications. This paper will discuss this issue in detail.

A usable WAP application should never confuse users, in that users should ideally
be able to find the most obvious operations intuitively — just one click away.
Unfortunately, if you tweak your application to be more usable on a particular
device, the chances are that usability will suffer on other devices.

This awkward situation is not simple to solve. In the worst case, implementing
multiple versions of an application (one for each family of browsers) might be the
best option you have. Learn about usability, and think about what can best be
achieved for your specific applications in your specific context.

Different Devices
Fine-tuning usability necessarily implies getting involved with the idiosyncrasies of
each device you intend to support. There's a general rule that you should always
keep in mind:

Applications developed for small displays tend to look and
work fine on large displays. Applications developed for large
displays tend to look and work very badly on small displays.

If, while developing your applications, you target the smallest devices that you
intend to support, you will find that in most cases you automatically target larger
devices too. PDA-like devices will be especially well covered, as they support

hyperlinks and features handled by <do> elements (features that are problematic
on very small screens) very well.

At the end of the presentation, I'll focus on two very common microbrowsers: the
Nokia 7110 and the UP.Browser family.

General Usability Guidelines
It is important to develop a set of concrete guidelines that you can apply when
designing a WAP application. Here are the most important questions you should ask
yourself:

Ø Is the application easy to learn?
Ø Is the application efficient to use?
Ø Are unusual operations easy to remember?
Ø Do users get stuck when there are errors?
Ø Are users likely to be frustrated by their attempts to use your

application?
Answering questions like these will put you on a good track to working out how
usable your application is. Let's see some general rules for building usable
applications.

Ø Top 20% of functionality: When porting an existing application to WAP
(an HTML page, for example), you should identify the main activities that
users will be interested in using while on the road. Porting parts of the
application that are not commonly used will be more expensive for you,
and will degrade the overall usability of the system, because of the extra
levels and navigation paths you are bound to introduce. In the case of
new applications, think of this rule as "refrain from implementing
functions that the majority of users won't use on the road".

Ø Rate user activities: Try to identify the main activities that the majority of
the users will perform, and build your application in a way that will let
users perform these activities in the fastest way possible. You should
make sure that the most common activities are intuitively available for all
users.

Ø Design it as a tree structure: Lay out a hierarchical tree of activities.
Users should enter the application at the root and be able to perform any
of the available activities through some path starting at the root. Each
level of the tree should be laid out according to the likely popularity of
the activities it contains.

Ø Minimize data entry: Most phones only have a phone keypad. Your
application should require textual data entry only when absolutely
necessary. Similarly, don't require users to remember codes or other
information when visiting your application — try to remember things for
them. In addition, the input mode of the terminal should be set to
support the expected format for the data that users will enter. This can
be achieved through input masks.

Ø Text should be terse: Short, polished, and informative text is vital to
guide users.

Ø Always implement 'back' functionality: All users like to explore when
confronted with a new application, and a 'back' function should be
available to them at all times. But be careful: users should go back to a
logical and consistent place in the application, which is not necessarily
the previous card.

Ø Consistency is very important: Applications can often require users to
perform the same activity (or very similar activities) in different parts of
the application. It is important that you deploy a consistent set of
metaphors that will help users find their way around easily.

Ø Push: Real-time information is a key piece of functionality that will give
extra value to WAP. Unfortunately, push is not part of the WAP standard
yet, but we should see it implemented in WAP 1.2. In spite of this,
several proprietary possibilities to do push through WAP already exist,
and you should exploit them if possible. Don't give up on the extra value
your application can acquire through push.

Ø Be prepared to test: If you are deploying a WAP application that is even
moderately complex, you should be ready to build prototypes as early as
possible in the development process. Find a non-technical person and let
them use your application on real phones.

Identifying Activities
When thinking about the main functionality of your application, start by rating the
user activities into categories according to how often users perform them. For
example:

Ø Activities that most users perform most of the time
Ø Activities most users perform occasionally
Ø Activities that specialized users perform once in a while

We give some more detailed groupings below. Identifying those activities is the
basis for breaking down the navigation flow and optimizing the navigation path
required to perform the main activities.

Ø Think of the tasks required to achieve the object of each activity
Ø Order the tasks by importance
Ø Lay out your user interface

For each activity, you should understand how users expect to perform them,
according to models users are familiar with. This could mean similarity with
corresponding PC or phone functions, or with the way users perform the activity in
their work.

Classifying activities in the following groups will help you map the design directly
into WML:

Ø Required Activities (compulsory activities for all users): These are
activities that all of the application users will have to perform. One typical
such activity is configuring your e-mail address and POP server when
using an e-mail application for the first time. Configuring access to a
different gateway is another example. It goes without saying that user-
friendliness degrades unacceptably if operations like this are requested
each time the user accesses an application. Avoid required activities or
minimize them as far as possible. In many cases, you can uniquely
identify each device and recall user preferences and configuration
parameters automatically. Use this possibility and avoid requiring users
to log in.

Ø Main-path Activities (high use activities): These are the activities that
80% or more of your users are likely to perform. Such activities should
be easily and intuitively available, without any learning curve or
unnatural interaction path for the inexperienced user. Performing main-
path activities should be as easy as possible (always one click away).

Ø Semi-main-path Activities (high use by a large segment of, but not all,
users): These are activities that many users (but not the majority)
perform often. Keep access to semi-main-path activities as simple as
possible, but make sure that they are not an impediment for users who
do not perform them.

Ø Side-path Activities (activities used occasionally by most users): These
are activities that 80% of users will perform, but only 20% of the time
they use your application. Replying to e-mail is one such activity. It
makes sense to implement access to side-path activities in a menu that is
not immediately accessible.

Ø Rare-path Activities (activities never used by most users): These
activities are there to support power users. If you identify rare-path
activities, consider the possibility of removing them altogether. It's better
to have a simple system than one with a lot of obscure options.

The classification of activities into main-path, semi-main-path, side-path, and rare-
path gives developers an indication of how they should implement navigation to the
different kinds of activities. Once a user is inside an activity however — whether it's
a frequently used operation or not — you should support that activity like a main-
path activity.

Guidelines for Specific Browsers
Good usability requires that you customize your application for each specific
browser. I will talk about usability issues on the UP.Browser, and the browser of the
Nokia 7110. This should help you to evaluate usability issues for other devices as
well.

Guidelines for Nokia 7110
What follows is an overview of the interface for the Nokia 7110 WAP browser:

- - - Card Title - - -
 text

text

text

Options Back

Bookmarks:

Back

Select

Option1

Option2

'Options' leads to a menu (some

predefined entries and some

elements defined by <do>
elements)

softkeys

Content (possibility

for scrolling)

Entering Data on the 7110
If you have an <input> or a <select> element in your code, you need to make it
clear to the user how they can submit the data in order to move on to the next
logical step.

The only sensible thing to do in these cases is to provide a link that will keep users
going with one click:

<p>
 Name please:
 <input type="text" name="searchkey" value="" />
 Submit data
</p>

If you use <do> elements, the 7110 browser will interpret it by adding an extra
element in the menu triggered by the left softkey. This is not good. Users will not
immediately see this, and so would be at a loss for what to do after they've entered
the data.

Forms
There are two types of form: wizard forms and elective forms.

Wizard forms let users insert data one bit at a time. Each card contains an input
element. It's a good idea to use Wizards when you can, since they let users focus
on entering data rather than navigation.

Forms implemented through a single card containing multiple input fields are called
elective forms.

It goes without saying that on the 7110, you should provide a link to let users
move from one card to the next, rather than using <do> elements.

Menu Navigation on the 7110
Menu navigation is a straightforward way to let your users access all the different
parts of your application, laid out in a tree structure.

The best way to implement this for a Nokia 7110 is by building a menu as a list of
anchors. For example:

Artist/Band
Title/Song
Top 20
New Releases
Concerts

Forcing users to do a lot of scrolling is not a good idea. If you need to display more
than nine or ten items, you should split your links over several cards or decks.

Backward Navigation
The right softkey of the 7110 can only be used as a back button, and is labeled as
such. By default, it has no action at all. Some sub-versions of the 7110 allow
reprogramming of the back key with <do type="prev">. Unfortunately, this is not
the case with all phones. The way to get the phone to do what you want is:

<card id="mycard" onenterforward="#nextcard"
 onenterbackward="http://logical_back">

Unfortunately, this has the side effect of spoiling the history stack.

Never provide a label for the <do type="prev"> element. The 7110 will remove the
Back label from the right softkey, and instead create a new entry in the menu
accessed through the left softkey. This confuses users who expect to find the back
key in a well-known position.

Guidelines for UP.Browser
The Phone.com browser has a different interface from the Nokia 7110. The general
idea behind the UP.Browser is that a <do> element is mapped directly to a softkey
whenever possible.

Users will only ever be one click away from performing a main-path activity. Other
activities will also be reachable in a simple way. This is in sharp contrast with the
Nokia 7110.

<do type="accept"> elements are normally used to support main-path activities.
They are also called ACCEPT buttons. Other activities are supported through
<do type="options"> elements (OPTION elements).

Content goes

here...

Softkey1 Softkey2

...and here

...and

here

scroll horizontally

and vertically

If you have a single main-path activity, for example, the best you can do is to
associate it with an ACCEPT button, which is always bound to a softkey (usually
mapped to Softkey1). This way, your users are only one click away from the
activity they are most likely to perform.

If you have a single <do type="option"> element (or OPTION button), this will be
mapped to Softkey2. In the case of multiple OPTION buttons, Softkey2 will display
the label menu, which leads to a pseudo-card that allows you to select the option
from a simple list (similarly to Softkey1 on the 7110).

Some UP.Browser phones support three softkeys. In that case, you can afford an
ACCEPT task and two OPTION tasks without the need to go through an extra menu.

In the diagram, you can see softkey1 on the left and softkey2 on the right, but this
is not always the case. Softkeys occupy different positions in different
implementations of the UP.Browser.

Entering Data on the UP.Browser
Unlike the Nokia 7110, the UP.browser does not require the presence of a link after
an input element in order to be usable. A <do> element will work wonders there:

<do type="accept" label="Send">
 <go href="receive.asp" />
</do>
<p>
 name please:
 <input type="text" name="username" value="" />
</p>

The data can be posted with just one click (on Softkey1). If you insert a navigation
link after the input element, as you should do with the 7110, the mechanism will
still work, but usability will degrade. The construct that follows will require no fewer
than three clicks to post the data from the UP.Browser.

<p>
 name please:
 <input type="text" name="username" value="" />
 Submit data
</p>

Forms
Use <do> elements to navigate from one card to the next; otherwise, the same
guidelines for forms apply as did for the Nokia 7110.

Menu Navigation on the UP.Browser
If you implement menu navigation the same way as you would on the 7110 (with a
bunch of links), the UP.Browser will work satisfactorily. Unfortunately, by doing so
you'll lose a feature that the UP.Browser supports to facilitate navigation for slightly
advanced users.

To demonstrate, the code below implements menu navigation in the optimal way
for the UP.Browser:

<select>
 <option onpick="#band" title="find">Artist/Band</option>
 <option onpick="#song" title="songs">Title/Song</option>
 <option onpick="#top" title="top">Top 20</option>
 <option onpick="#new" title="new">New Releases</option>
 <option onpick="#conc" title="live">Concerts</option>
</select>

Here is how the UP.Browser renders the code:

The numbers on the left of the screen are shortcuts. If you implement navigation
menus this way, UP.Browser users will not be required to scroll to the menu item of
choice, since they can press the number on their keypads and trigger the onpick
event for the corresponding menu choice.

The Generic Approach
The basic idea behind the 'generic browser' is to identify a subset of WML that both
the browsers used above interpret in a more or less usable way.

Guidelines for the Generic Browser
The generic browser is an attempt at defining the lowest common denominator
features of WML that work acceptably well on the two main browsers.

Entering Data on the Generic Browser
The 7110 requires the use of links. On the other hand, it's better to use a <do>
element on the UP.Browser, as a link would introduce two extra steps. Using <do>
elements on the Nokia 7110 is not acceptable — but there's nothing to prevent you
from using both a link and a <do> element in the same card, as shown in the
example below (a modified version of the example you saw earlier):

<card id="card1" title="mycard">
 <do type="accept" label="Send">
 <go href="receive.asp" />
 </do>
 <p>
 name please:
 <input type="text" name="username" value="" />
 Submit data
 </p>
</card>

In the UP.Browser, users will be able to navigate with the Accept button after they
have acknowledged the text they wrote in the form. As far as the Nokia is
concerned, users will get a link after the input form — business as usual for them.

Menu Navigation on the Generic Browser
No matter how useful the shortcuts supported by the option-onpick pair in the
UP.Browser, the lack of support for this feature on the 7110 means that you should
implement menu navigation with a list of links. The list of links works well enough
on the UP.Browser, after all.

Conclusion: Is Generic Navigation Good Enough?
At this point, you might wonder if the generic approach is good enough. Generally
speaking, the answer is 'No!'

The generic approach forces you to discard all of the really good things that each
microbrowser has to offer, and to settle for an alternative that proves to be
mediocre in both environments, despite being useful in some cases.

The alternatives are the creation of multiple applications, or support for multiple
versions through XML/XSLT transformations. For more information about these
approaches, see http://www.webtechniques.com/archives/2000/03/passani/, and check out
the XML/XSLT session at this conference, by Wei Meng Lee.

Resources
General application style guidelines for WML services:
http://updev.phone.com/dev/ts/technotes/userfriendly.pdf

Application style guidelines for WML services in GSM markets:
http://updev.phone.com/dev/ts/doc/style/gsm900-1800.pdf

