

WAP-Enabled Banking and Broking: A Case Study
Morgan O'Connor, Macalla Software Limited

The purpose of this session paper is to discuss the issues associated with the
deployment of a secure, WAP-based, transactional banking and broking system,
and to build a solution with these issues in mind.

There are many pitfalls and problems that have to be overcome when developing
an m-commerce solution, ranging from security to providing support for the
multitude of WAP-enabled devices that are currently on the market. The problems
of linking into an existing back-end infrastructure also need to be met. This paper
will compare and contrast available technologies that could be used to solve each of
these issues, and justify the technologies that were finally chosen.

Macalla Software has been used by a number of leading institutions in the financial
services sector to give them the capability to provide their services to the wireless
market. This paper draws upon the experience of the speaker during the
deployment of a number of these WAP applications.

The Project
The goal of this project was to develop a combined retail banking and broking
application that was to be delivered to multiple channels, including WAP devices
and the Internet. The information had to be retrieved from existing back-end
systems on a combination of different platforms. The following diagram illustrates a
high-level view of the required solution:

From this diagram, we can see that multiple information sources are to be delivered
to multiple distribution channels, with the possibility of adding more on either side
at a later stage.

The key feature of designing and implementing this kind of system is its
architecture. Effective implementation of the architecture gives the system the
scalability and flexibility to add further information sources and distribution
channels efficiently, as and when they become available.

Firstly, let's go through the typical characteristics of a retail banking/broking
solution.

Retail Banking/Broking Characteristics
The attributes that typically classify the deployment of retail, WAP-based, financial
applications include:

Ø Large numbers of end users — the potential user base for retail banks
and stockbrokers is large.

Ø A large number of differing terminals — because the typical retail
institution does not directly offer mobile handsets to its customers in
order to access the service, it can expect that it will need to support a
variety of different devices.

Ø Relatively non-technical users — this means that the service being
offered needs to be easy to operate and access. The operation of WAP
banking/broking services is relatively straightforward — assuming good
WAP design principles are maintained — and there should be minimum
requirements upon the end users to reconfigure their handsets to access
the service.

Ø High volume of transactions with low individual values. As is typical in a
retail environment, the amount of capital at risk when conducting an
individual transaction is low, but there are large numbers of transactions
being executed.

Ø The ability of a financial institution to reach its customers is enhanced by
using the portals of the mobile operators, as it greatly reduces the
amount of independent branding required to alert the audience to the
service.

Financial Institution Concerns
When a financial institution takes the decision to implement a multi–channel
service, there are a number of initial concerns that must be looked at seriously.

Security
Security of information is the primary concern of any financial institution when
deploying its applications across the Internet or wireless devices.

Deploying a solution across multiple distribution channels causes its own problems.
More often than not, there are different sets of security technologies on the
different distribution channels. These available technologies must be investigated
and a security strategy drawn up.

The security strategy used by the financial institution is of utmost importance —
every service that is delivered over an electronic medium has an associated risk.
The key to a successful strategy must be to determine the acceptable level of risk
for the service.

Time to Market
As in every industry, time to market is an important concern for financial
institutions. Being first to market and early providing additional services can raise
the perceived image of the financial institution in the eyes of its customers — not to
mention the publicity that can be generated by such a deployment.

Investment in the Future
Financial institutions that recognize the importance of delivering their financial
services across multiple distribution channels will need to be confident in the
technologies that they are using. By choosing the right technologies, it makes it
easier to deploy new services, and to take advantage of new distribution channels
as they become available.

Functionally Rich Application
The financial institution will want to deliver as much functionality as possible to its
customers. The functionality that will be delivered is dependent upon multiple
issues.

All of these concerns must be weighed up, and a balance between them decided
upon.

Technical Concerns
When setting out to implement a mobile-based banking and broking application,
there are a number of immediate technical problems that need to be overcome.

Multiple Sources of Information
In a typical deployment, there is more than one back-end application to interface
with (for example, a banking mainframe and a broking database). These
applications usually reside on different platforms, and provide their content in
different formats. Because of this, when developing a distribution and transactional
system, a piece of middleware is required that will facilitate the consolidation of
information into a standard format, thereby allowing for the extraction of that
information in a uniform way from multiple sources.

In this paper, I will be showing how we came to choose an XML middleware
platform, and how this benefited us in the distribution of the information to multiple
channels.

Multiple Distribution Channels
Initially in this project there were two distribution channels: the Internet and WAP.
This presented a number of problems:

• Formatting output — Because the two channels take the information in
different formats (HTML and WML), we had to investigate how we could
deliver it in a way that still gave the page designers maximum flexibility.

• Cross compatibility in WAP devices — The problem with delivering
information to multiple WAP devices is that each device has its own
capabilities, such as display, security, configuration, and so on.

• Security — How do we create a security policy that can be extended to
multiple different distribution channels with the technologies that are
currently available?

We felt that we needed to create an architecture that would allow us to add new
distribution channels securely and easily, as they became available. In this paper, I
will describe technologies that were investigated, and explain the architecture that
we decided upon.

Approaching a Solution
There are myriad technologies that could be used. In order to find a solution, we
needed to filter through those technologies to come up with what we felt were the
most flexible and extensible.

From the overall architecture of the required system, we realized that we would
require multiple components in order to build it:

Ø The information was retrieved from back-end systems, so we would need
to interface with those

Ø The information from those multiple sources would have to be channeled
through a common middleware layer

Ø We would then need a component that handles the display of this
information to the customer, based on their device, their preferences,
and their access level

The sections below explain the technologies that were used in the final
implementation, and look at some of the factors that make these technologies the
best choice.

Other issues included the development environment, development tools, the testing
environment, testing tools, and the problems concerned with a live deployment of
the system.

Middleware
When we were deciding on a middleware solution, there were a number of different
areas that were covered:

Ø Data representation
Ø Data distribution
Ø Data manipulation

Data Representation
A generic architecture requires a generic data representation. The solution to this
problem is the Extensible Markup Language (XML). The purpose of XML (and its
related technologies) is to provide a means of describing information generically,
which facilitates easy machine manipulation and rendering. XML is portable data.

In order to facilitate multi-channel applications and diverse client devices, as much
application logic as possible must be factored out into generic layers. XML has
rapidly become the universal language for structuring business-critical information,
and is defining the rate at which application interaction can be achieved. Factoring
behavior into reusable components, and using XML for data representation and
communication, provides a truly generic architecture.

Data Distribution
After deciding on XML for data representation, we needed a way to channel this
information so that it could be dynamically distributed throughout the enterprise.
This is where DynamiX from Macalla Software fits in.

Macalla Software's DynamiX is a highly optimized server for handling distribution,
caching, filtering, and management of dynamic XML documents in a distributed,
Internet-enabled environment.

Data Manipulation
Java provides the best support for portable code, especially with the arrival of the
Java Enterprise Edition with its support for JavaBeans and Enterprise JavaBeans
(EJB). Java and XML work very well together, and an architecture that utilizes these
technologies should provide a mechanism to access XML information through a
layer of JavaBeans.

In our architecture, we decided upon JavaBeans as a means by which the
underlying XML should be manipulated. This simplifies the way in which the
information in an XML document can be set or retrieved. We developed a set of
tools that enabled us to create a JavaBean representation of an XML document
schema.

Information that needs to be retrieved from the source can be described in an XML
schema. Using tools that we developed, this schema would be used to create a
JavaBean that provides helper properties, so that the information contained in the
document can be manipulated.

Example
In this simple example, I will show how a response to a balance request would be
satisfied. Firstly, describe your information in an XML schema:

<?xml version="1.0" encoding="UTF-8"?>
<Schema name="BalanceResponse">
 <ElementType name="AccountNo">
 <element type="string" minOccurs="1" maxOccurs="1"/>
 </ElementType>
 <ElementType name="Balance">
 <element type="string" minOccurs="1" maxOccurs="1"/>
 </ElementType>
 <ElementType name="Currency">
 <element type="string" minOccurs="1" maxOccurs="1"/>
 </ElementType>
 <ElementType name="SwiftCode">
 <element type="string" minOccurs="1" maxOccurs="1"/>
 </ElementType>
 <ElementType name="BalanceResponse">
 <element type="AccountNo"/>
 <element type="SwiftCode"/>
 <element type="Balance"/>
 <element type="Currency"/>
 </ElementType>
</Schema>

A "filled out" version of this schema might look like this:

<?xml version="1.0" encoding="UTF-8"?>
<BalanceResponse>
 <AccountNo>123456789</AccountNo>
 <SwiftCode>900</SwiftCode>
 <Balance>$200.00</Balance>
 <Currency>USD</Currency>
</BalanceResponse>

When you've decided how your XML data should be represented, take the schema,
and using a JavaBean generator, create a bean. The bean now contains properties
that allow you set and get the values in the underlying XML document. This bean
can be used by an application interfacing with an information source to allow it
easily to generate the XML representation of the information.

In the code extract below, you can see that the response bean is created and the
values are set using the methods that are available in the generated bean:

BalanceResponse handleBalance(BalanceRequest request)
{
 // Decode the request parameters here, and
 // create an appropriate message to send to the host system
 String strAccountID = request.getAccountID();
 ...

 // Send Request to host (e.g. using MQSeries etc.)
 // and wait for the response
 ...
 Balance hostBalance = m_Host.getBalance(strAccountID, ...);

 // Create a response based on the response from the host
 BalanceResponse xmlResponse = new BalanceResponse();

 responseTrans.setAccountNo(hostBalance.getAccount());
 responseTrans.setSwiftCode(hostBalance.getSwift());
 responseTrans.setBalance(hostBalance.getBalance());
 responseTrans.setCurrency(hostBalance.getCurr());

 // Return the response
 return xmlResponse;
}

When this response bean is returned, the XML middleware component delivers it
back to the requesting component.

Summary
The middleware solution of choice proves to be distributed XML. This enables the
data to be easily manipulated by the applications that are interfacing with the
information sources. More reasons for using an XML document architecture
combined with JavaBeans will be described in the next sections.

Content Display and Management
An important lesson that has been learned from the early years of the Internet is
the need to separate content from presentation. Doing so greatly simplifies the
distribution of content to multiple channels.

Model View Controller
The Model View Controller design pattern is a means by which an application's
logic can be decoupled from the view of its information:

Controller

View Model

As we already have our information contained in JavaBeans, we have solved the
"model" part of the equation.

In the architecture that we have deployed, the "controller" is synonymous with a
Java servlet. The servlet receives a request from a client, and the request is sent to
a bean that generates an XML request document. This request document is sent
through the XML middleware to the host interface application, and a response is
generated (again with the help of the beans) and returned.

Once we have the information in a bean, it's time to use a "view" to display the
information. Built into the controlling servlet is a module that identifies the
capabilities of the connecting client. If a WAP-enabled mobile phone is making the
request, responsibility for the view will be dispatched to a handler that will return
the view of this information in WML format. What technology is this view built on?
JavaServer Pages (JSP).

JSPs combine markup language with snippets of Java code to facilitate the creation
of dynamic HTML/WML/XML pages. JSPs have natural support for JavaBean
technology, allowing them easily to retrieve information from the beans, and to
render that information to the connecting client in the correct format. The following
sample JSP file displays the content of the XML document in HTML format:

<HTML>

 <HEAD>
 <TITLE>Balance Response</TITLE>
 </HEAD>

 <jsp:useBean id="BalanceResponse" class="BalanceResponse" scope="session"/>

 <BODY>
 <TABLE BORDER="5" CELLSPACING="5" CELLPADDING="10" BGCOLOR="#C0C0C0">
 <TR CLASS="ListHeader">
 <TD>AccountNo.</TD>
 <TD>Swift Code</TD>
 <TD>Balance</TD>
 <TD>Currency</TD>
 </TR>
 <TR>
 <TD><%=BalanceResponse.getAccountNo()%></TD>
 <TD><%=BalanceResponse.getSwiftCode()%></TD>
 <TD><%=BalanceResponse.getBalance()%></TD>
 <TD><%=BalanceResponse.getCurrency()%></TD>
 </TR>
 </TABLE>
 </BODY>
</HTML>

The following JSP will render the same information in WML:

<%Response.setContentType("text/vnd.wap.wml");%>
<?xml version="1.0"?>

<jsp:useBean id="BalanceResponse" class="BalanceResponse" scope="session"/>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//Dtd WML 1.1//EN"
 "http://www.wapforum.org/Dtd/wml_1.1.xml">
<wml>
 <card id="Balance" title="Account Balance">
 <p mode="nowrap">

 <table columns="4">
 <tr>
 <td>Account</td>
 <td>Swift Code</td>
 <td>Balance</td>
 <td>Currency</td>
 </tr>

 <tr>
 <td><%=BalanceResponse.getAccountNo()%></td>
 <td><%=BalanceResponse.getSwiftCode()%></td>
 <td>£ <%=BalanceResponse.getBalance()%></td>
 <td><%=BalanceResponse.getCurrency()%></td>
 </tr>
 </table>
 </p>
 </card>
</wml>

From this, we can see that the JSP files are only concerned with the display of the
information, which is what they are best at. The application logic is left up to the
controlling servlet.

This degree of separation allows for a very flexible and extensible system. As more
distribution channels become available, more views of the information can be
created, but this won't affect the logic behind the application.

Testing/Deploying the Solution
We recommend that any financial institution currently looking to deploy a secure
financial service over a WAP environment have two environments: Deployment and
Test/Backup. The deployment environment is self-evident, but the use of a
test/backup environment is prudent in the current climate for a number of reasons:

Ø Not all mobile operators support WTLS, so they're not able to support
secure delivery of banking/broking services using their own WAP
systems. Providing an environment that supports banking/broking
irrespective of current mobile operator facilities is an important ability.

Ø Independence from operators. Because use of the operator's WAP
gateway is an essential part of the financial institution's m-commerce
offering, it is important that an element of independence is possible. An
existing application may become non-operational due to a change in the
mobile operator's configuration. A separate configuration will allow a
backup service.

Ø New services. With a separate facility, it is possible to try new services
with closed user groups, without having to ensure that the service works
successfully with all the operators in the financial institution's area of
operation.

Deployment
For deployment scenarios, Macalla Software recommends the use of the operator's
WAP gateway, provided that:

Ø The use of 128-bit SSL from the WAP gateway to the origin server is
enabled.

Ø The use of 128-bit WTLS for delivery of secure WAP services over the
mobile airwaves is enabled.

Ø Level 2 of the WAP 1.1 WTLS specification is implemented. This will allow
authentication of the WAP gateway. The use of the mobile operator's
WAP gateway precludes the direct authentication of the bank/broker's
service (because authentication is with the mobile operator), requiring
users to trust that the mobile operator has securely connected them
directly to the correct site.

Ø Mobile operators give assurances about the configuration and
maintenance of the WAP server. Specifically, assurances about the
procedures used to ensure that it is not possible for external or internal
parties to gain access to financial information about the bank/broker's
clients.

The use of the network operator's gateway allows the financial institution to be
visible from the operator's portal, which in a retail environment provides great
assistance to the service.

Test/Backup
Finally, for the test/backup environment, Macalla Software recommends that the
bank/broker use a corporate WAP gateway (for example, Nokia's WAP server or
similar). Benefits that accrue include:

Ø End-to-end security — if a corporate WAP gateway is used, it can be
positioned as part of an existing (or proposed) Internet strategy. It would
be placed behind the firewall used to deliver traditional web content, and
could be configured to accept requests from suitably equipped WAP
phones. In this configuration, no information is available to any third
party, as the WAP gateway is located upon the facilities of the
bank/broker.

Ø Direct authentication of bank/broker's service — the use of a corporate
WAP gateway will allow the handset to authenticate with the service
directly.

Ø Backup capabilities — the corporate WAP gateway allows a backup
service to be offered to customers.

Ø Test facilities — the ability to test the applications with real, live
customers without going through the appropriate channels is essential.

