
Item 3 Stay with XML 1.0

Everything you need to know about XML 1.1 can be summed up in two
rules.

1. Don’t use it.
2. (For experts only) If you speak Mongolian, Yi, Cambodian, Amharic,

Dhivehi, Burmese, or a very few other languages and you want to
write your markup (not your text but your markup) in these lan-
guages, you can set the version attribute of the XML declaration to
1.1. Otherwise, refer to rule 1.

XML 1.1 does several things, one of them marginally useful to a few
developers, the rest actively harmful.

10 ❘ Part 1 Syntax

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 10

� It expands the set of characters allowed as name characters.
� The C0 control characters (except for NUL) such as form feed, verti-

cal tab, BEL, and DC1 through DC4 are now allowed in XML text
provided they are escaped as character references.

� The C1 control characters (except for NEL) must now be escaped as
character references.

� NEL can be used in XML documents but is resolved to a line feed on
parsing.

� Parsers may (but do not have to) tell client applications that Unicode
data was not normalized.

� Namespace prefixes can be undeclared.

Let’s look at these changes in more detail.

New Characters in XML Names

XML 1.1 expands the set of characters allowed in XML names (that is, ele-
ment names, attribute names, entity names, ID-type attribute values, and
so forth) to allow characters that were not defined in Unicode 2.0, the ver-
sion that was extant when XML 1.0 was first defined. Unicode 2.0 is fully
adequate to cover the needs of markup in English, French, German, Russ-
ian, Chinese, Japanese, Spanish, Danish, Dutch, Arabic, Turkish, Hebrew,
Farsi, Thai, Hindi, and most other languages you’re likely to be familiar
with as well as several thousand you aren’t. However, Unicode 2.0 did
miss a few important living languages including Mongolian, Yi, Cambo-
dian, Amharic, Dhivehi, and Burmese, so if you want to write your
markup in these languages, XML 1.1 is worthwhile.

However, note that this is relevant only if we’re talking about markup,
particularly element and attribute names. It is not necessary to use XML
1.1 to write XML data, particularly element content and attribute values,
in these languages. For example, here’s the beginning of an Amharic
translation of the Book of Matthew written in XML 1.0.

<?xml version="1.0" encoding="UTF-8">

<book>

Item 3 Stay with XML 1.0 ❘ 11

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 11

</verse>

<verse number="_">

_____ _____ ____

____ _____ ____

____ _____ ______ ____

</verse>

</chapter>

</book>

Here the element and attribute names are in English although the content
and attribute values are in Amharic. On the other hand, if we were to
write the element and attribute names in Amharic, we would need to use
XML 1.1.

<?xml version="1.1" encoding="UTF-8">

<____>

<_____>_____ ____</_____>

<____ ___="_">

<_____>_____ ___ __ ___</_____>

<__ ___="_">

____ ___ ______ __ __ __ _____ _____ ___ __ ___ ______ ___

</__>

<__ ___="_">

_____ _____ ____

____ _____ ____

____ _____ ______ ____

</__>

</____>

</____>

This is plausible. A native Amharic speaker might well want to write
markup like this. However, the loosening of XML’s name character rules
have effects far beyond the few extra languages they’re intended to enable.
Whereas XML 1.0 is conservative (everything not permitted is forbidden),

12 ❘ Part 1 Syntax

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 12

XML 1.1 is liberal (everything not forbidden is permitted). XML 1.0 lists
the characters you can use in names. XML 1.1 lists the characters you
can’t use in names. Characters XML 1.1 allows in names include:

� Symbols like the copyright sign (©)
� Mathematical operators such as ±
� Superscript 7 (7)
� The musical symbol for a six-string fretboard
� The zero-width space
� Private-use characters
� Several hundred thousand characters that aren’t even defined in Uni-

code and probably never will be

XML 1.1’s lax name character rules have the potential to make documents
much more opaque and obfuscated.

C0 Control Characters

The first 32 Unicode characters with code points from 0 to 31 are known
as the C0 controls. They were originally defined in ASCII to control tele-
types and other monospace dumb terminals. Aside from the tab, carriage
return, and line feed they have no obvious meaning in text. Since XML is
text, it does not include binary characters such as NULL (#x00), BEL
(#x07), DC1 (#x11) through DC4 (#x14), and so forth. These noncharac-
ters are historical relics. XML 1.0 does not allow them. This is a good
thing. Although dumb terminals and binary-hostile gateways are far less
common today than they were twenty years ago, they are still used, and
passing these characters through equipment that expects to see plain text
can have nasty consequences, including disabling the screen. (One com-
mon problem that still occurs is accidentally paging a binary file on a con-
sole. This is generally quite ugly and often disables the console.)

A few of these characters occasionally do appear in non-XML text data.
For example, the form feed (#x0C) is sometimes used to indicate a page
break. Thus moving data from a non-XML system such as a BLOB or
CLOB field in a database into an XML document can unexpectedly cause
malformedness errors. Text may need to be cleaned before it can be added
to an XML document. However, the far more common problem is that a
document’s encoding is misidentified, for example, defaulted as UTF-8
when it’s really UTF-16 or ISO-8859-1. In this case, the parser will notice
unexpected nulls and throw a well-formedness error.

Item 3 Stay with XML 1.0 ❘ 13

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 13

XML 1.1 fortunately still does not allow raw binary data in an XML docu-
ment. However, it does allow you to use character references to escape the
C0 controls such as form feed and BEL. The parser will resolve them into
the actual characters before reporting the data to the client application.
You simply can’t include them directly. For example, the following docu-
ment uses form feeds to separate pages.

<?xml version="1.1">

<book>

<title>Nursery Rhymes</title>

<rhyme>

<verse>Mary, Mary quite contrary</verse>

<verse>How does your garden grow?</verse>

</rhyme>



<rhyme>

<verse>Little Miss Muffet sat on a tuffet</verse>

<verse>Eating her curds and whey</verse>

</rhyme>



<rhyme>

<verse>Old King Cole was a merry old soul</verse>

<verse>And a merry old soul was he</verse>

</rhyme>

</book>

However, this style of page break died out with the line printer. Modern
systems use stylesheets or explicit markup to indicate page boundaries.
For example, you might place each separate page inside a page element or
add a pagebreak element where you wanted the break to occur, as shown
below.

<?xml version="1.1">

<book>

<title>Nursery Rhymes</title>

<rhyme>

<verse>Mary, Mary quite contrary</verse>

<verse>How does your garden grow?</verse>

</rhyme>

<pagebreak/>

<rhyme>

14 ❘ Part 1 Syntax

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 14

<verse>Little Miss Muffet sat on a tuffet</verse>

<verse>Eating her curds and whey</verse>

</rhyme>

<pagebreak/>

<rhyme>

<verse>Old King Cole was a merry old soul</verse>

<verse>And a merry old soul was he</verse>

</rhyme>

</book>

Better yet, you might not change the markup at all, just write a stylesheet
that assigns each rhyme to a separate page. Any of these options would be
superior to using form feeds. Most uses of the other C0 controls are
equally obsolete.

There is one exception. You still cannot embed a null in an XML docu-
ment, not even with a character reference. Allowing this would have
caused massive problems for C, C++, and other languages that use null-
terminated strings. The null is still forbidden, even with character escap-
ing, which means it’s still not possible to directly embed binary data in
XML. You have to encode it using Base64 or some similar format first.
(See Item 19.)

C1 Control Characters

There is a less common block of C1 control characters between 128
(#x80) and 159 (#x9F). These include start of string, end of string, cancel
character, privacy message, and a few other equally obscure characters.
For the most part these are even less useful and less appropriate for XML
documents than the C0 control characters. However, they were allowed in
XML 1.0 mostly by mistake. XML 1.1 rectifies this error (with one notable
exception, which I’ll address shortly) by requiring that these control char-
acters be escaped with character references as well. For example, you can
no longer include a “break permitted here” character in element content
or attribute values. You have to write it as ‚ instead.

This actually does have one salutary effect. There are a lot of documents
in the world that are labeled as ISO-8859-1 but actually use the nonstan-
dard Microsoft Cp1252 character set instead. Cp1252 does not include
the C1 controls. Instead it uses this space for extra graphic characters such
as €, Œ, and ™. This causes significant interoperability problems when

Item 3 Stay with XML 1.0 ❘ 15

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 15

moving documents between Windows and non-Windows systems, and
these problems are not always easy to detect.

By making escaping of the C1 controls mandatory, such mislabeled docu-
ments will now be obvious to parsers. Any document that contains an
unescaped C1 character labeled as ISO-8859-1 is malformed. Documents
that correctly identify themselves as Cp1252 are still allowed.

The downside to this improvement is that there is now a class of XML
documents that is well-formed XML 1.0 but not well-formed XML 1.1.
XML 1.1 is not a superset of XML 1.0. It is neither forward nor backward
compatible.

NEL Used as a Line Break

The fourth change XML 1.1 makes is of no use to anyone and should
never have been adopted. XML 1.1 allows the Unicode next line character
(#x85, NEL) to be used anywhere a carriage return, line feed, or carriage
return–line feed pair is used in XML 1.0 documents. Note that a NEL
doesn’t mean anything different than a carriage return or line feed. It’s
just one more way of adding extra white space. However, it is incompat-
ible not only with the installed base of XML software but also with all the
various text editors on UNIX, Windows, Mac, OS/2, and almost every
other non-IBM platform on Earth. For instance, you can’t open an XML
1.1 document that uses NELs in emacs, vi, BBEdit, UltraEdit, jEdit, or
most other text editors and expect it to put the line breaks in the right
places. Figure 3–1 shows what happens when you load a NEL-delimited
file into emacs. Most other editors have equal or bigger problems, espe-
cially on large documents.

If so many people and platforms have such problems with NEL, why has
it been added to XML 1.1? The problem is that there’s a certain huge
monopolist of a computer company that doesn’t want to use the same
standard everyone else in the industry uses. And—surprise, surprise—its
name isn’t Microsoft. No, this time the villain is IBM. Certain IBM main-
frame software, particularly console-based text editors like XEdit and
OS/390 C compilers, do not use the same two line-ending characters (car-
riage return and line feed) that everybody else on the planet has been
using for at least the last twenty years. Instead those text editors use char-
acter #x85, NEL.

16 ❘ Part 1 Syntax

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 16

If you’re one of those few developers writing XML by hand with a plain
console editor on an IBM mainframe, you should upgrade your editor to
support the line-ending conventions the rest of the world has standard-
ized on. If you’re writing C code to generate XML documents on a main-
frame, you just need to use \x0A instead of \n to represent the line end.
(Java does not have this problem.) If you’re reading XML documents, the
parser should convert the line endings for you. There’s no need to use
XML 1.1.

Unicode Normalization

For reasons of compatibility with legacy character sets such as ISO-8859-1
(as well as occasional mistakes) Unicode sometimes provides multiple
representations of the same character. For example, the e with accent
acute (é) can be represented as either the single character #xE9 or with the
two characters #x65 (e) followed by #x301 (combining accent acute).
XML 1.1 suggests that all generators of XML text should normalize such

Item 3 Stay with XML 1.0 ❘ 17

Figure 3–1 ❘ Loading a NEL-Delimited File into a Non-IBM Text Editor

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 17

alternatives into a canonical form. In this case, you should use the single
character rather than the double character.

However, both forms are still accepted. Neither is malformed. Further-
more, parsers are explicitly prohibited from doing the normalization for
the client program. They may merely report a nonfatal error if the XML is
found to be unnormalized. In fact, this is nothing that parsers couldn’t
have done with XML 1.0, except that it didn’t occur to anyone to do it.
Normalization is more of a strongly recommended best practice than an
actual change in the language.

Undeclaring Namespace Prefixes

There’s one other new feature that’s effectively part of XML 1.1: name-
spaces 1.1, which adds the ability to undeclare namespace prefix map-
pings. For example, consider the following API element.

<?xml version="1.0" encoding="UTF-8">

<API xmlns:public="http://www.example.com"

xmlns:private="http://www.example.org" >

<title>Geometry</title>

<cpp xmlns:public="" xmlns:private="">

class CRectangle {

int x, y;

public:void set_values (int,int);

private:int area (void); }

</cpp>

</API>

A system that was looking for qualified names in element content might
accidentally confuse the public:void and private:int in the cpp ele-
ment with qualified names instead of just part of C++ syntax (albeit ugly
C++ syntax that no good programmer would write). Undeclaring the
public and private prefixes allows them to stand out for what they actually
are, just plain unadorned text.

In practice, however, very little code looks for qualified names in element
content. Some code does look for these things in attribute values, but in
those cases it’s normally clear whether or not a given attribute can contain
qualified names. Indeed this example is so forced precisely because prefix
undeclaration is very rarely needed in practice and never needed if you’re
only using prefixes on element and attribute names.

18 ❘ Part 1 Syntax

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 18

That’s it. There is nothing else new in XML 1.1. It doesn’t move name-
spaces or schemas into the core. It doesn’t correct admitted mistakes in
the design of XML such as attribute value normalization. It doesn’t sim-
plify XML by removing rarely used features like unparsed entities and
notations. It doesn’t even clear up the confusion about what parsers
should and should not report. All it does is change the list of name and
white space characters. This very limited benefit comes at an extremely
high cost. There is a huge installed base of XML 1.0–aware parsers,
browsers, databases, viewers, editors, and other tools that don’t work with
XML 1.1. They will report well-formedness errors when presented with
an XML 1.1 document.

The disadvantages of XML 1.1 (including the cost in both time and
money of upgrading all your software to support it) are just too great for
the extremely limited benefits it provides most developers. If you’re more
comfortable working in Mongolian, Yi, Cambodian, Amharic, Dhivehi, or
Burmese and you only need to exchange data with other speakers of one
of these languages (for instance, you’re developing a system exclusively
for a local Amharic-language newspaper in Addis Ababa where everybody
speaks Amharic), you can set the version attribute of the XML declara-
tion to 1.1. Everyone else should stick to XML 1.0.

Item 4 Use Standard Entity References ❘ 19

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 19

Item 29 Always Use a Parser

XML documents are just too rich in syntax sugar to be processed by any-
thing short of a full-blown XML parser. I’ve seen many hackish systems
held together by string and bailing wire based on regular expressions,
grep, sed, raw stream processing, and other tools. These are extremely
brittle and rarely able to handle the full panoply of documents they
encounter. Problems include:

� Detecting the encoding, including handling multibyte character sets
� Comments that contain tags

162 ❘ Part 3 Semantics

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 162

� Processing instructions that contain tags
� CDATA sections
� Unexpected placement of spaces and line breaks within tags
� Default attribute values applied from the internal DTD subset
� Character references like and
� Predefined entity references such as & and >
� Malformedness errors
� Empty-element tags
� Internal DTD subsets that define default attribute values

These all have little to nothing to do with the semantic content or struc-
ture of a document. They have a great deal to do with syntax. A parser
knows how to resolve all of these into the actual intended content. Very
few other processes do. In fact, if you were to write your own program
that handled all of this correctly, you’d be very close to inventing your
own XML parser. The fact is, nothing short of a real XML parser can truly
handle XML. Any program you write to process XML documents needs
to sit on top of a real XML parser.

There are two main reasons developers invent their own systems based on
regular expressions or other tools instead of using an XML parser.

1. They’re simply not familiar with parsers and their APIs.
2. They find parsing to be too slow.

If it’s simply a question of developer familiarity, the solution is simple.
Learn to use SAX, DOM, JDOM, or some other API that sits on top of a
parser. Numerous books can help you, including my own Processing XML
with Java (Boston, MA: Addison-Wesley, 2002).1

The question of performance is more fundamental. However, fortunately
it’s often a canard. Before resorting to brittle non-XML tools for process-
ing data, measure the real speed of the parser-based equivalent. Often
parsing is not the bottleneck. Even if it is, the parser-based program may
still be fast enough for your needs. If it isn’t, you can often improve per-
formance by moving to a different parser. For instance, Piccolo is often
noticeably faster than Xerces, though it’s not quite as feature rich. The
slowdown may be the parser’s fault but not the API’s. A different parser
with the same API may well do better. If it is the API’s fault, you may be

Item 29 Always Use a Parser ❘ 163

1. See http://www.cafeconleche.org/books/xmljava/ for more information.

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 163

able to switch to a different API that performs better on your class of doc-
uments. (Items 32 and 33 discuss which APIs are appropriate for which
tasks.) Finally, you may be able to live without some optional features like
external entity resolution and validation that increase the cost of parsing.

However, let’s assume that it is indeed the parser’s fault. You’re using the
fastest API and parser available, and you still can’t get the performance
you want. Is it then acceptable to write a quick and dirty program that
saves time by skipping a lot of mandated well-formedness checks and not
processing all the syntax sugar? Is it acceptable to write your own mini-
parser that properly handles only a subset of XML? I think the answer is
no, it is not acceptable. I tend to side with Bertrand Meyer here. Although
not specifically addressing XML, his more general point is correct:

Necessary as tradeoffs between quality factors may be, one factor
stands out from the rest: correctness. There is never any justification
for compromising correctness for the sake of other concerns such as
efficiency. If the software does not perform its function, the rest is
useless.2

Developers think they can get away with compromising correctness
because they assume they know the input format. They know the docu-
ments will always be well formed. They know all the element names in
advance. They know the documents don’t use CDATA sections, docu-
ment type declarations, or processing instructions. Sometimes, as in
SOAP, this is even required by the specification.

Nonetheless, relying on such assumptions is dangerous. In a heteroge-
neous, distributed, network environment, it’s insane. Sooner or later (and
more likely sooner) these assumptions will be violated. SOAP messages
are sent with processing instructions, the specification not withstanding.
Authors do use character and entity references even when they’re told not
to. Programmers put in document type declarations for testing and then
forget to take them out in production. An upgraded library may begin
inserting character and entity references whereas before it used literal
characters. Any syntax that can be used will be used, and programs need
to be ready for this.

Often developers object that they’re only using the XML documents in-
ternally, on their intranets. These are never passed through the firewall.

164 ❘ Part 3 Semantics

2. Meyer, Bertrand. Object-Oriented Software Construction, 2nd ed. Upper Saddle River, NJ:
Prentice Hall, 1997, p. 15.

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 164

Thus they have absolute confidence that the documents will always adhere
to the constraints their homegrown systems require. These developers
have been fortunate enough never to work with Wally or have a pointy-
haired boss, but sooner or later we all have to deal with Wally. Assume
nothing! Verify everything, even if you’re only on an intranet. Sooner or
later somebody or something is going to violate your assumptions.

At the absolute extreme, documents are passed between two well-tested
and debugged computer processes on the same computer that never talk
to anybody else. The output of one process is tied very closely to the input
of the other. No human ever intervenes and the code is never changed; or
if it is changed, it’s only changed in sync with the other system. In this
case, it seems perfectly reasonable to make additional assumptions about
the format of the data being read. For instance, if you know the sending
process never generates comments, you don’t need to write the code to
handle them. Indeed, if there were such processes in the real world, this
might be true. However, in practice nothing is ever so clean. It may not
happen today, it may not happen next week, it may not happen before you
jump ship to a company with fewer pointy-haired bosses, but sooner or
later the sending process is going to change the documents it sends. Per-
haps this will happen because the new programmer who took your place
is modifying the system but managed to misplace all the detailed docu-
mentation you left behind. (And if you aren’t the sort of programmer
who leaves behind documentation, they have an even bigger problem.)
It may happen after a library is upgraded, and the new version uses
entity references instead of character references or just puts in a comment
identifying itself as the generator of the XML document. It may even hap-
pen because some programmer is using telnet to manually insert docu-
ments into the system to figure out what it does. Do you want to tell your
CIO that because your program didn’t use an XML parser, it missed a
well-formedness error in the input data and consequently the database
running all the stores in the tri-state area was corrupted and crashed at
1:22 P.M. on Christmas Eve?

Hopefully by now you’re convinced that you just can’t do better than
a real XML parser. But what should you do if your systems are still too
slow? I suppose you could always throw hardware and memory at the
problem. Sometimes that’s enough. However, you may reach a point
where you have to admit that XML is not the right approach for your sys-
tem. If you really do have an unfixable performance problem, you might
need to consider using a simpler format that requires less work from the

Item 29 Always Use a Parser ❘ 165

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 165

parser, such as tab-delimited text. This loses many of the well-known
benefits of XML, but if you’re considering throwing away XML syntax
and well-formedness rules to gain speed, you’ve lost those already. What
you’re processing may look like XML, but it isn’t, not really. However, this
doesn’t happen often. Most systems can optimize the XML parsing to the
point where it is no longer a crippling deficiency.

166 ❘ Part 3 Semantics

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 166

Item 37 Validate Inside Your Program with Schemas

Rigorously testing preconditions is an important characteristic of robust,
reliable software. Schemas make it very easy to define the preconditions
for XML documents you parse and the postconditions for XML docu-
ments you write. Even if the document itself does not have a schema, you
can write one and use it to test the documents before you operate on
them. It is quite hard to attach a DTD to a document inside a program.
Fortunately, however, most other schema languages are much more flex-
ible about this.

For example, let’s suppose you’re in charge of a system at TV Guide that
accepts schedule information from individual stations over the Web.
Information about each show arrives as an XML document formatted as
shown in Example 37–1.

Item 37 Validate Inside Your Program with Schemas ❘ 203

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 203

Example 37–1 ❘ An XML Instance Document Containing a Television Program Listing

<Program xmlns="http://namespaces.example.com/tvschedule"

<Title>Reality Bites</Title>

<Description>

Elimination tournament in which contestants eat a

succession of gross items until only one is left standing.

Tonight's episode features rancid apples, insects, and

McDonald's Happy Meals.

</Description>

<Date>2003-11-21</Date>

<Start>08:00:00-05:00</Start>

<Duration>PT30M</Duration>

<Station>KFOX</Station>

</Program>

Every day, around the clock, stations from all over the country send sched-
ule updates like this one that you need to store in a local database. Some of
these stations use software you sold them. Some of them hire interns to
type the data into a password-protected form on your web site. Others use
custom software they wrote themselves. There may even be a few hackers
typing the information into text files using emacs and then telnetting to
your web server on port 80, where they paste in the data. There are about a
dozen different places where mistakes can creep in. Therefore, before you
even begin to think about processing a submission, you want to verify that
it’s correct. In particular, you want to verify the following.

� The root element of the document is Program .
� All required elements are present.
� No more than one of each element is present.
� The Title element is not empty.
� The date is a legal date in the future.
� The Start element contains a sensible time.
� The duration looks like a period of time.
� The station identifier is a four-letter code beginning with either K

or W.
� The station identifier maps to a known station somewhere in the

country, which can be determined by looking it up in a database run-
ning on a different machine in your intranet.

You could write program code to verify all of these statements after the
document was parsed. However, it’s much easier to write a schema that

204 ❘ Part 3 Semantics

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 204

describes them declaratively and let the parser check them. The W3C
XML Schema Language, RELAX NG, and Schematron can all handle
about 85% of these requirements. They all have problems with the
requirement that the date be in the future and that the station be listed in
a remote database. These will have to be checked using real programming
code written in Java, C++, or some other language after the document has
been parsed. However, we can make the other checks with a schema.
Example 37–2 shows one possible W3C XML Schema Language schema
that tests most of the above constraints.

Example 37–2 ❘ A W3C XML Schema for Television Program Listings

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Program">

<xsd:complexType>

<xsd:all>

<xsd:element name="Title">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:minLength value="1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Description" type="xsd:string"/>

<xsd:element name="Date" type="xsd:date"/>

<xsd:element name="Start" type="xsd:time"/>

<xsd:element name="Duration" type="xsd:duration"/>

<xsd:element name="Station">

<xsd:simpleType>

<xsd:restriction base="xsd:token">

<xsd:pattern value="(W|K)[A-Z][A-Z][A-Z]"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:all>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Item 37 Validate Inside Your Program with Schemas ❘ 205

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 205

For simplicity, I’ll assume this schema resides at the URL http://www.
example.com/tvprogram.xsd in the examples that follow, but you can
store it anywhere convenient.

There are several different ways to programmatically validate a docu-
ment, depending on the schema language, the parser, and the API. Here
I’ll demonstrate two: Xerces-J using SAX properties and DOM Level 3
validation.

Xerces-J

The Xerces-J SAX parser supports validation with the W3C XML Schema
Language. By default, it reads the schema with which to validate docu-
ments from the xsi:schemaLocation and xsi:noNamespaceSchema
Location attributes in the instance document. However, you can over-
ride these with the http://apache.org/xml/properties/schema/
external-schemaLocation and http://apache.org/xml/properties/
schema/external-noNamespaceSchemaLocation SAX properties.
In this example, the documents being validated have namespaces, so
we’ll set http://apache.org/xml/properties/schema/external-

schemaLocation to http://www.example.com/tvprogram.xsd.
Then, we’ll turn on schema validation by setting the http://apache.
org/xml/features/validation/schema feature to true.

XMLReader parser = XMLReaderFactor.createXMLReader(

"org.apache.xerces.parsers.SAXParser");

parser.setProperty(

"http://apache.org/xml/properties/schema/external-

schemaLocation",

"http://namespaces.example.com/tvschedule"

+ " http://www.example.com/tvprogram.xsd");

parser.setFeature(

"http://apache.org/xml/features/validation/schema",

true);

We’ll also have to register an ErrorHandler to receive any validation
errors that are detected. Because validity errors aren’t necessarily fatal
unless we make them so, we’ll rethrow the SAXParseException passed
to the error() method. Example 37–3 shows an appropriate Error
Handler class.

206 ❘ Part 3 Semantics

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 206

Example 37–3 ❘ A SAX ErrorHandler That Makes Validity Errors Fatal

import org.xml.sax.*;

public class ErrorsAreFatal implements ErrorHandler {

public void warning(SAXParseException exception) {

// Ignore warnings

}

public void error(SAXParseException exception)

throws SAXException {

// A validity error; rethrow the exception.

throw exception;

}

public void fatalError(SAXParseException exception)

throws SAXException {

// A well-formedness error

throw exception;

}

}

This ErrorHandler also needs to be installed with the parser.

parser.setErrorHandler(new ErrorsAreFatal());

Finally, the document can be parsed. The parser checks it against the
schema as it parses. At the same time, the ContentHandler methods
accumulate the data into the fields. Since SAX parsing interleaves parser
operation with client code, all the data collected should be stored until
the complete document has been validated. Only then can you be sure
the document is valid and the information should be committed. Ex-
ample 37–4 demonstrates one way to build a TVProgram object that
stores this data. The constructor is private, so the only way to build such
an object is by passing an InputStream containing a TVProgram docu-
ment to the readTVProgram() method. The TVProgram object is actually
created before the parsing starts. However, it’s not returned to anything
outside this class until the input document has been parsed and any con-
straints verified. If a constraint is violated, then an exception is thrown.

Item 37 Validate Inside Your Program with Schemas ❘ 207

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 207

Example 37–4 ❘ A Program That Validates against a Schema

import java.util.*;

import java.io.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class TVProgram extends DefaultHandler {

private String title;

private String description;

private Date startTime; // includes both date and time

private int duration; // rounded to nearest second

private String station; // rounded to nearest second

private TVProgram() {

// Data will be initialized in the readTVProgram() method

}

private static XMLReader parser;

// Initialization block. No need to load a new parser for

// each document.

static {

try {

parser = XMLReaderFactory.createXMLReader(

"org.apache.xerces.parsers.SAXParser");

parser.setProperty(

"http://apache.org/xml/properties/schema/external-schemaLocation",

"http://namespaces.example.com/tvschedule"

+ " http://www.example.com/tvprogram.xsd");

parser.setFeature(

"http://apache.org/xml/features/validation/schema",

true);

parser.setErrorHandler(new ErrorsAreFatal());

}

catch (SAXException e) {

throw new RuntimeException(

"Handling exceptions in static initializers is tricky");

}

}

208 ❘ Part 3 Semantics

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 208

public static TVProgram readTVProgram(String systemID)

throws SAXException, IOException {

TVProgram program = new TVProgram();

parser.setContentHandler(program);

parser.parse(systemID);

// If no exception has been thrown yet, then the document

// must be valid. However, we still have to check the

// constraints the schema couldn't:

checkDateInFuture(program.startTime);

checkStationExists(program.station);

// If we get here, everything's fine.

return program;

}

private static void checkDateInFuture(Date date)

throws SAXException {

// Java code to compare the date to the current time

}

private static void checkStationExists(String station)

throws SAXException {

// JDBC code to look up the station call letters in our

// database

}

// Various ContentHandler methods that will fill in the fields

// of this object. This could be a separate class instead...

// Various setter and getter and other methods...

}

Item 37 Validate Inside Your Program with Schemas ❘ 209

Presumably, after such an object has been read, other code will store it in a
database or otherwise work with it. And, of course, building an object
that exactly matches the data in the document is far from the only way to
model the data. All these details will depend on the business logic in the
rest of the program. However, the input checking through validation will
normally be similar to what’s shown here.

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 209

DOM Level 3 Validation

DOM Level 3 provides a detailed API for validation. This API can be used
to validate against any schema language the parser supports, although
DTDs and W3C XML Schema Language schemas are certainly the most
common options.

Caution This section is based on working drafts of the relevant specifications and
experimental software. The broad picture presented here is correct, but a lot
of details are likely to change before DOM Level 3 is finalized.

Unlike SAX, DOM objects can be validated when the document is first
parsed or at any later point. You can also validate individual nodes
rather than validating the entire document. To validate while parsing, you
set the following features on the document or document builder’s
DOMConfiguration object.

� schema-type: A URI identifying the schema language used to vali-
date. Values include http://www.w3.org/2001/XMLSchema for the
W3C XML Schema Language and http://www.w3.org/TR/REC-xml
for DTDs.

� schema-location: A white-space-separated list of URLs for partic-
ular schema documents used to validate.

� validate: If true, all documents should be validated. If false, no
documents should be validated unless validate-if-schema is true.

� validate-if-schema: Validate only if a schema (in whatever lan-
guage) is available, either one set by the schema-location and
schema-type parameters or one specified in the instance docu-
ment using a mechanism such as a DOCTYPE declaration or an
xsi:schemaLocation attribute.

For example, here’s the DOM Level 3 code to parse the document at
http://www.example.net/kfox.xml while validating it against the
schema at http://www.example.com/tvprogram.xsd.

DOMImplementation impl = DOMImplementationRegistry

.getDOMImplementation("XML 1.0 LS-Load 3.0");

if (impl == null || !impl.hasFeature("Core", "3.0") {

throw new Exception("DOM Level 3 not supported");

}

210 ❘ Part 3 Semantics

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 210

DOMImplementationLS implLS = impl.getInterface("LS-Load", "3.0");

DOMBuilder builder = implLS.createDOMBuilder(

DOMBuilder.MODE_SYNCHRONOUS,

"http://www.w3.org/2001/XMLSchema");

DOMConfiguration config = builder.getConfig();

config.setParameter("validate", Boolean.TRUE);

config.setParameter("schema-location",

"http://www.example.com/tvprogram.xsd");

config.setParameter("schema-type",

"http://www.w3.org/2001/XMLSchema");

builder.setErrorHandler(new DOMErrorHandler() {

public boolean handleError(in DOMError error) {

System.err.println(error.getMessage());

}

});

Document doc = builder.parseURI(

"http://www.example.net/kfox.xml");

Item 37 Validate Inside Your Program with Schemas ❘ 211

Currently, this API is only experimentally supported by Xerces and the
Xerces-derived XML for Java, but more parsers should support it in the
future.

If you make modifications to a document, DOM3 allows you to revalidate
it to make sure it’s still valid. This is an optional feature, and not all DOM
Level 3 implementations support it. If one does, each Document object
will be an instance of the DocumentEditVal interface as well. Just cast the
object to this type and invoke the validateDocument() method as
shown below.

if (doc instanceof DocumentEditVal) {

DocumentEditVal docVal = (DocumentEditVal) doc;

try {

boolean valid = docVal.validateDocument();

}

catch (ExceptionVAL ex) {

// This document doesn't have a schema

}

}

You can even continuously validate a document as it is modified. If
any change makes the document invalid, the problem will be reported to

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 211

the registered DOMErrorHandler. Just set the continuousValidity
Checking attribute to true.

docVal.setContinuousValidityChecking(true);

This is particularly useful if the modifications are not driven by the pro-
gram but by a human using an editor. In this case, you can even check the
data input for validity before allowing the changes to be made.

If you need to change the schema associated with a document, set the
schema-location and schema-type parameters on the document’s
DOMConfiguration object.

DOMConfiguration config = doc.getConfig();

config.setParameter("schema-type",

"http://www.w3.org/2001/XMLSchema");

config.setParameter("schema-location",

"http://www.example.com/schema.xsd");

To validate this document, you would then call validateDocument() as
described above.

Validation with DOM differs from validation with SAX in that you don’t
actually begin working with the document until after it has been vali-
dated. Thus there’s no need to worry about committing the data in pieces.
This is a common difference between SAX and DOM programs. A second
advantage is that DOM validation can be reversed so that you build the
document in memory and then check for validity before outputting it.
You can even check every node you add to the Document object for adher-
ence to a schema immediately and automatically.

Whether you validate with SAX or DOM, whether you do so continu-
ously or just once when the document is first parsed, and whether the
schema is a DTD, a W3C XML Schema Language schema, or something
else, validation is an extremely useful tool. Even if you don’t reject invalid
documents, you can still use the result of validity checking to determine
what to do with any given document. For instance, you might validate
documents against several known schemas to identify the document’s
type and dispatch the document to the method that processes that type.
Validation is an essential component of robust, reliable systems.

212 ❘ Part 3 Semantics

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 212

