
Introduction to XML
Digital Signatures

CHAPTER 4

In June 2000, the U.S. Congress approved the Electronic Signatures in
Global and National Commerce Act (E-SIGN Act). This broad legislation
gave electronically generated signatures a new legitimacy by preventing
contest of a contract or signature based solely on the fact that it is in elec-
tronic form. In other words, an electronic transaction cannot be denied
authenticity because of its electronic nature alone. The E-SIGN Act is
expected to facilitate business-to-business commerce by mitigating the
need for logistically expensive paper signatures. The portability of XML as
a data format makes it ideal for business-to-business transactions that
require a robust mechanism for both data integrity and authentication. In
response to these business requirements, as well as requirements from
the legal industry, the “XML-DSig” Charter was established. The goals of
this joint IETF/W3C Charter include the creation of a highly extensible
signature syntax that is not only tightly integrated with existing XML
technologies, but also provides a consistent means to handle composite
documents from diverse application domains.

04_CH04/DournaeeX 1/24/02 10:30 AM Page 107

XML Signature Basics
An XML Signature is a rich, complex, cryptographic object. XML Signa-
tures rely on a large number of disparate XML and cryptographic tech-
nologies. The culmination of these technologies results in a signature
syntax that can be quite abstract and daunting, even to those well versed
in both security technology and XML syntax and tools. The XML Signa-
ture syntax is designed with a high degree of extensibility and flexibility;
these notions add to the abstract nature of the syntax itself, but provide a
signature syntax that is conducive to almost any signature operation.

The XML-Signature Syntax and Processing W3C Recommendation
defines the XML Signature syntax and its associated processing rules.
This recommendation, like most of the additional XML-related recom-
mendations, can be found at the World Wide Web Consortium Web site,
http://www.w3.org. The XML Signature Recommendation will likely
change in subtle ways as XML Signatures become more pervasive and
gain implementation experience. However, we are not concerned with the
nooks and crannies of the specification, but instead with the basic reason
for its existence, examples, and the fundamental properties that define an
XML Signature. One might question why we need such a rich signature
syntax that differs markedly from our existing signature infrastructure. If
we compared an existing messaging syntax, such as PKCS#71, to XML
Signatures, we would see drastic differences in the intent and implemen-
tation of the syntax.

We will first attempt to describe XML Signatures from an abstract
point of view. This will establish broad notions and definitions that can be
built upon in a systematic way towards practical examples. Readers with
little experience with digital signatures can refer to the primer in Chap-
ter 2 or to a similar section in one of the references listed in Chapter 2.
Our first definition is shown below.

XML Security108

Definition 4.1

XML Signature The specific XML syntax used to represent a dig-
ital signature over any arbitrary digital content.

1For more information on PKCS#7 see the primer in Chapter 2.

04_CH04/DournaeeX 1/24/02 10:30 AM Page 108

At first glance this definition seems remedial to anyone who has cre-
ated a digital signature even once. The only marked difference is that the
signature is defined to be XML. This point is especially important and pro-
vides insight into the purpose of the XML Signature. Currently, a digital
signature (either RSA or DSA) over arbitrary digital content results in
raw binary output of a relatively fixed size. The output of an RSA signa-
ture is related to the key-size used; the output of a DSA signature is
related to the representation of the encoding used. Moreover, to verify a
raw digital signature, the signer must provide additional information to
the verifier, including the type of algorithm used as well as information
about the recipient and verification key. Once these parameters are con-
figured, it is often difficult to change them or have a mechanism in place
that is robust in different scenarios. Before the advent of XML and its
related technologies, several solutions emerged to aid in this type of
extensible processing—ASN.1 and BER encoding, coupled with a hierar-
chical set of Algorithm Object Identifiers are currently used to facilitate
this type of flexible processing. Readers unfamiliar with ASN.1 and
BER/DER encoding should refer to the primer in Chapter 2. The ASN.1
definition of an Algorithm Identifier that is used to encode algorithm spe-
cific information is shown in Listing 4-1.

The actual value of OBJECT IDENTIFIER is defined by various stan-
dards bodies and is intended to be a unique bit-string that is encoded in a
raw binary format that conforms to BER/DER. For example, an
AlgorithmIdentifier that designates an RSA Signature with the
SHA-1 hash function might be encoded as in Listing 4-2.

109Chapter 4 Introduction to XML Digital Signatures

Listing 4-1

ASN.1 definition of
AlgorithmIdentifier

AlgorithmIdentifier :: SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }

Listing 4-2

AlgorithmIdentifier
for RSA with SHA-1

30 0D 06 09 2A 86 48 86 F7 0D 01 01 05 05 00

04_CH04/DournaeeX 1/24/02 10:30 AM Page 109

This bit-string is intended to merely identify a type of signature algo-
rithm. This type of compact binary representation is a rather tedious and
complex way of accomplishing the simple task of informing someone what
type of signature algorithm is to be used during application processing. In
contrast to the algorithm identifier used above, an XML Signature would
use the following identifier to denote the same RSA Signature with the
SHA-1 hash function:

http://www.w3.org/2000/09/xmldsig#rsa-sha1

Because XML is a text-based format, this type of algorithm identifier
lends itself to the type of text-based processing common for XML docu-
ments. Whereas the previous algorithm identifier is a more compact (and
therefore smaller) representation, the pervasiveness of XML parsers
makes such a text-identifier more viable and much simpler. XML Signa-
tures have tried to remove themselves from this type of compact binary
representation when possible, although the binary-encoded identifiers are
still used in the creation of the signature for backwards compatibility.

An XML Signature is itself an XML document; it carries with it all of
the properties of a well-formed XML document. All of the information
needed to process the signature can be embedded within the signature
representation itself, including the verification information. Furthermore,
all XML Signatures can undergo minimal processing even when applica-
tions do not have XML signing or verification capabilities. The elements,
attributes, and text (if present) can all be processed as “normal” XML
(except the actual signature and digest values). The added complexity of
an XML Signature lies not in the signature process or cryptographic oper-
ations used, but in the additional processing features demanded by XML
documents. XML Signatures are more closely related to a messaging syn-
tax such as PKCS#7, rather than raw binary digital signatures. An XML
Signature specifies the structure of the signature in relation to the source
documents; it also has the capability to encompass a cryptographic key or
X.509 certificate for signature verification. We can define the high-level
procedure for generating an XML Signature as follows:

XML Security110

Definition 4.2

An XML Signature is generated from a hash over the canonical
form of a signature manifest.

04_CH04/DournaeeX 1/24/02 10:30 AM Page 110

This “meta-algorithm” gives us a flavor for what is involved in signa-
ture generation. It does not encapsulate the specifics of signature genera-
tion, which will be covered later. Perhaps the most curious part of the
definition is the use of the term “manifest.” This term is often used in con-
junction with XML to refer to a master list of sorts, but it has its origins
in the description of cargo on a sailing vessel. It may be useful to think of
“manifest” as the collection of resources that are signed2; these may be
local to the signature itself or Web resources that are accessible via a Uni-
form Resource Identifier (URI). One can think of the XML Signature as a
sailing vessel that carries with it a cargo list (manifest) that must brave
unknown networks to arrive at its destination unscathed.

The signature manifest, or list of resources to be signed, is expressed
using XML. XML allows for syntactic variations over logically equivalent
documents. This means that it is possible for two XML documents to differ
by one byte but still be semantically equivalent. A simple example is the
addition of white space inside XML start and end tags. This liberal format
causes problems for hash functions, which are sensitive to single byte dif-
ferences. Readers unfamiliar with cryptographic hash functions may refer
to the primer in Chapter 2. To alleviate this problem, a canonicalization
algorithm is applied to the signature manifest to remove syntactic differ-
ences from semantically equivalent XML documents. This algorithm
ensures that the same bytes are hashed and subsequently signed. For
example, consider the following arbitrary empty XML element.

<Manifest Id="ReferenceList"/>

If one were to apply a SHA-1 hash to the above element, the hash out-
put would be the following octet-string:

61 16 EC F9 32 60 A1 20 65 8B DD 6C DB 96 23 3B E5 1D 33 C2

Consider what would happen if we were to modify the element by
adding some spaces:

<Manifest Id="ReferenceList"/>

The SHA-1 hash would now produce the following completely different
octet-string:

78 54 7D E6 2C 3C 4E 39 25 00 63 F7 61 08 A2 33 DC 0D 29 92

111Chapter 4 Introduction to XML Digital Signatures

2The manifest actually contains a list of digests of the resources.

04_CH04/DournaeeX 1/24/02 10:30 AM Page 111

The hash values do not match, but the semantics of the empty XML ele-
ment in each case are exactly the same. This subtle complication with how
XML is processed is clear evidence for the use of a robust normalization
algorithm within XML Signature processing.

The last item of interest is the use of the hash function itself. Hash
functions are used so pervasively in conjunction with digital signatures
that it often seems they are a necessary, defining component. It is possi-
ble to generate a digital signature using only a signing key and acceptable
public-key algorithm. Hash functions are convenient and when used with
digital signatures, reduce the size of what is being signed and effectively
speed up the signing operation. A hash function is used in two different
scenarios when XML Signatures are generated. Each resource included in
the manifest is hashed, and this list or collection of resources is then
hashed a second time during the signing operation. One might ask why a
manifest or list is required at all. Consider what would happen if the num-
ber of resources to be included in the signature grows. Applying a signa-
ture algorithm to each resource would be time-consuming and would
hinder the creation and verification of an XML Signature. The manifest or
list is a means to side-step this problem. Instead of signing each resource,
we hash each resource, which is much faster; then, we include the hash
value and resource location in the manifest.

At this point, we have briefly discussed the definition of an XML Sig-
nature along with an extremely high-level signature generation proce-
dure. The definitions given thus far are terse but precise and should give
the reader a strong foundation for understanding XML Signatures. The
next topic concerns the semantics of an XML Signature. Presenting a
clear idea of what it means for something to be signed by an XML Signa-
ture will help the reader understand the limits of XML Signatures from a
conceptual standpoint. (See Definition 4.3.)

XML Security112

Definition 4.3

An XML Signature associates the contents of a signature manifest
with a key via a strong one-way transformation.

04_CH04/DournaeeX 1/24/02 10:30 AM Page 112

These semantics are very precise—an XML Signature defines a one-
way signature operation based on a signing key. It is important to note
that the term “one-way” is used informally in this context. Most people
believe that there is no feasible way to reverse the signature transforma-
tion. The most common signature transformations that are used in con-
junction with XML Signatures are RSA Signatures, DSA Signatures, and
symmetric key message authentication codes. The term “one-way” refers
to the cryptographic properties of these or any other signature algorithms
that may be used. XML Signatures have the ability to utilize symmetric
key message authentication codes (HMACs), which can also be used as a
strong signature transformation. For more information on HMAC, refer to
the primer in Chapter 2.

Digital signatures have wide applications for associating a document or
data with an actual human, just as a normal paper signature does. Based
on this notion, an XML Signature is widely believed to provide this sort of
trust semantic. While this is extremely useful and practical, an XML Sig-
nature by itself does not associate a signing key with an individual. An
XML Signature instead provides the means to establish this sort of asso-
ciation. This is accomplished by the convenient method of packaging the
verification key within the XML Signature via an optional element. In a
sense, the XML Signature may present the verification material (either
raw public key or certificate that contains the public key) to the applica-
tion, leaving the issue of trust to the application. Well-defined mecha-
nisms for validating the identity of a signer based on public key
information already exist, such as certificate path validation. This decou-
pling of entity verification from the actual signature gives the application
more flexibility in deciding its own custom trust mechanisms. For exam-
ple, an application might wish to check if a particular entity has the
authority to sign a document or portion of a document. Not all private
keys are authorized as signing keys. A trusted authority might have
restrictions on private key usage for a particular individual, or an indi-
vidual’s key pair might have been revoked altogether. These additional
trust semantics lie outside of the scope of an XML Signature. A few legal
and technical organizations have pushed for stronger integration of addi-
tional trust semantics, but at present they are left out of the scope of XML
Signatures. The XML Signature leaves the problem of establishing trust
to another core XML Security technology called XKMS (XML Key Man-
agement Specification).

113Chapter 4 Introduction to XML Digital Signatures

04_CH04/DournaeeX 1/24/02 10:30 AM Page 113

XML Signatures and Raw Digital Signatures
We can now supplement the XML Signature basics with some examples.
We will first briefly examine the structure of an XML Signature in terms
of its defining tags. At the outset we will hide much of the complexity of an
XML Signature and attempt to relate it to raw digital signatures over
binary data. As we proceed through the examples, we will see how the
asymmetry of raw digital signatures makes them cumbersome, and how
the XML Signature is a superior design for many cases. Before we begin,
a definition of “raw digital signature” is in order. The referent here is the
simple case of an RSA private key operation applied to a hash of the orig-
inal document. DSA could be used for this example as well; the choice is
rather arbitrary. This type of “raw” signature assumes a basic padding
scheme (either PKCS#1 or some appropriate padding scheme) that does
little more than transform the hashed data into a valid input for the RSA
algorithm. The term “raw” does not necessitate the absence of padding (as
in raw RSA encryption), but simply implies that the signature has no
packaging mechanism applied to it that affords it additional semantics.
Readers unfamiliar with PKCS#1 or padding schemes in general should
refer to the primer in Chapter 2.

Listing 4-3 gives the outer structure or skeleton of an XML Signature.
The elements are XML tags, and their structure defines the parent-child
relationships of each element. The reader may also notice the use of car-
dinality operators. These operators denote the number of occurrences of
each element within the parent <Signature> element. The definition of
each cardinality operator is given in Table 4-1. The absence of a cardinal-
ity operator on an element or attribute denotes that exactly one occur-
rence of that element must appear.

XML Security114

Operator Description

* Zero or more occurrences

� One or more occurrences

? Zero or one occurrence

Table 4-1

Cardinality
Operators

04_CH04/DournaeeX 1/24/02 10:30 AM Page 114

At first glance the structure shown in Listing 4-3 may seem overly com-
plex or even a bit daunting. Many readers are probably questioning
whether the surface complexity is really necessary. We can apply an intel-
lectual knife to simplify the structure to a vacuous case shown in List-
ing 4-4. This simplification hides the added features of the XML Signature
and allows us to think of things in terms of a “raw” digital signature.

We are intentionally leaving out the cardinality operators in this
instance. Here we assume that one and only one element of each type is
allowed. Even this vacuous example may fail to make much sense without
further context. Definition 4.1 refers to the idea of a signature manifest.
Recall that the manifest is a list or collection of resources that are to be
included in the signature. These resources can be remote Web resources,
local resources, or even same document references. This list or manifest is
the contents of the <SignedInfo> element as shown in Listing 4-4. For
now, we will ignore the complexity of this element and assume that it
somehow points to everything that we wish to sign and includes all the
information necessary to produce the actual signature. This being the
case, Listing 4-4 begins to make more sense. The parent <Signature>

115Chapter 4 Introduction to XML Digital Signatures

Listing 4-3

The XML
Signature
structure

<Signature>
<SignedInfo>
<CanonicalizationMethod>
<SignatureMethod>
(<Reference (URI=)?>
(<Transforms>)?
<DigestMethod>
<DigestValue>

</Reference>)+
</SignedInfo>

<SignatureValue>
(<KeyInfo>)?
(<Object>)*
</Signature>

Listing 4-4

The vacuous XML
Signature

<Signature>
<SignedInfo>
</SignedInfo>
(SignatureValue)

</Signature>

04_CH04/DournaeeX 1/24/02 10:30 AM Page 115

element contains two entities: an original document, or collection of original
documents (<SignedInfo>), and an actual signature value (Signature-
Value). At this point, the <Signature> element serves to group the two
items for easy transmission to a third party. We are also intentionally omit-
ting references to terms like enveloped, enveloping, or detached at this
point. These terms have precise definitions when used in conjunction with
XML Signatures and should not be confused with their use with other stan-
dards (such as PKCS#7 or S/MIME). An example instance of the signature
syntax shown in Listing 4-4 is given in Listing 4-5.

Some readers may notice the nature of the data inside the
<SignatureValue> tag. This is the Base-64 encoded signature value.
Base-64 encoding is used pervasively in XML-related applications. Base-
64 encoding is a convenient, well-defined encoding mechanism for creat-
ing a unique, printable representation of arbitrary binary data. Because of
its text representation, Base-64 encoding is a natural solution for use in
conjunction with XML. Readers unfamiliar with Base-64 encoding should
refer to the primer in Chapter 2.

In Listing 4-5 we have again hidden the complexity of the <Signed-
Info> element. We ignore the details of this element and just assume
that it contains a reference to the original document that we are signing.
The Base-64 encoded data shown in Listing 4-5 is simply the result of
applying our chosen signature algorithm and hash function to the con-
tents of <SignedInfo>.

We now have enough background information to begin comparing our
simplified XML Signature to a “raw” digital signature. Consider the prob-
lem of signing a piece of text data residing on some local storage device

XML Security116

Listing 4-5

Instance of the
vacuous XML
Signature

<Signature>
<SignedInfo>
</SignedInfo>
<SignatureValue>
MI6rfG4XwOjzIpeDDDZB2B2G8FcBYbeYvxMrO/
Ta7nm5ShQ26KxK71Ch+4wHCMyxEkBxx2HP0/7J
tPiZTwCVEZ1F5J4vHtFTCVB8X5eEP8nmi3ksdT
Q+zMtKjQII9AbCNxdA6ZtXfaOV4euO7UtRHyK1
7Exbd9PNFxnq46b/f8I=
</SignatureValue>

</Signature>

04_CH04/DournaeeX 1/24/02 10:30 AM Page 116

using a “raw” signature. Listing 4-6 shows the piece of data we are going
to sign. We can assume that it is an electronic check in a simple, fictitious
format.

Let us assume we already have a private signing key and that we are
going to perform an RSA signature using the SHA-1 hash function. The
output from the signature operation using a 512 bit key might look some-
thing like Listing 4-7. An RSA signature operation is just an RSA private
key operation applied to a hash of the original document.

This signature value is not very interoperable and does not carry with
it much context. The most we could discern is that it is 64 bytes of data.
To solve this problem, we need to send along the binary algorithm identi-
fier. This is the same binary data that is shown in Listing 4-2. In List-
ing 4-8 we will show the same algorithm identifier as interpreted by an
ASN.1 parser. The text shown is generated from an ASN.1 interpreter; the
actual value that needs to be sent must still be encoded in binary.

This AlgorithmIdentifier will give a recipient some information
about how the signature was generated so it can be properly verified.

117Chapter 4 Introduction to XML Digital Signatures

Listing 4-6

Example
electronic check

check.txt
I authorize a payment of $2 from my checking account to the paperboy.
L. Meyer

Listing 4-8

ASN.1
interpretation of
the RSA with
SHA-1 algorithm
identifier

SEQUENCE {
OBJECT IDENTIFIER sha1withRSAEncryption (1 2 840 113549 1 1 5)
NULL }

Listing 4-7

Binary RSA
digital signature
(512 bit key)

92 F4 10 8C BD 29 98 C8 54 59 9D CD 62 F0 18 BE
75 69 4D 64 1A ED E7 7E 6D BD E9 7C 58 EA DE 3C
5B 4F 03 4B A0 F1 6A 1F DC 30 B4 8E 91 82 00 29
72 B6 86 0A B6 CA 3C 80 18 32 55 46 69 57 6D A8

04_CH04/DournaeeX 1/24/02 10:30 AM Page 117

Finally, we also need to send the original document. The original docu-
ment, which is in a text format, is required to determine if the signature
verifies. At this point we have three pieces of data that need to be sent to
a third party: the signature value, algorithm identifier, and original mes-
sage. The physical representation of the three entities differs. Two pieces
of the data are in binary format and the third is encoded in text. We can
solve this problem by applying Base-64 encoding to the two binary pieces,
which results in three pieces of data in a printable format. We now have
homogeneous data, but we still have no context or header information
that gives us clear semantics for the three pieces. A crude attempt at
packaging this raw type of signature appears in Listing 4-9.

In our contrived format above, the first line contains the algorithm
identifier, the next two lines contain the signature value, and the remain-
der is the original document. The problem with this type of crude format
is that there is no context or structure for the different pieces of the sig-
nature. The recipient of such a signature would have to know about our
proprietary format in advance. This may be acceptable if we are dealing
with a single recipient, but as the number of recipients grows, this type of
format quickly becomes unworkable.

This is where the power of XML as a portable data format begins to
show some advantages. In Listing 4-10 we will expand on our simple XML
Signature syntax and show how two new elements, <SignatureMethod>
and <Reference>, are used to identify the signature algorithm and
actual file pointed to. Note that Listing 4-10 still omits additional syntax
and features.

We have added the new elements (shown in bold) as children of
<SignedInfo>. Notice that the <Reference> element has an attribute
called URI that identifies the file that we are signing, as well as two addi-

XML Security118

Listing 4-9

Packaging a raw
digital signature

MA0GCSqGSIb3DQEBBQUA
kvQQjL0pmMhUWZ3NYvAYvnVpTWQa7ed+bb3pfFjq3jxbTwNLoPFqH9wwtI6Rgg
ApcraGCrbKPIAYMlVGaVdtqA==
I authorize a payment of $2 from my checking account to the paperboy.
L. Meyer

04_CH04/DournaeeX 1/24/02 10:30 AM Page 118

tional child elements that identify a digest value and a digest algorithm.
The signature operation used in XML Signatures never signs resources
directly, only hashes of resources. This not only speeds up single signature
operations, but also provides an easy way to sign multiple resources. Mul-
tiple <Reference> elements can be added to the <SignedInfo> ele-
ment. Only one is shown here. Lastly, the included <SignatureMethod>
element is an empty element that contains only a single attribute. The
attribute is called Algorithm and is a URI that describes the type of sig-
nature operation used (in this case, RSA with SHA-1).

Consider the differences between the XML Signature shown in List-
ing 4-10 and the “raw” digital signature shown in Listing 4-9. We might
describe Listing 4-10 with words like structured, context-specific, or exten-
sible, whereas Listing 4-9 might be described as fragmented, context-free,
or rigid. These adjectives encompass the nature of XML data in just about
any context, and digital signatures are no different. In fact, we have
barely touched on the different facets and features and syntax of XML
Signatures. What is shown in Listing 4-10 is a degenerate case that will
be used only in simple situations, if at all. In the next section we will
examine the additional features of XML Signatures and see how they can
be adapted to almost any digital signing situation.

119Chapter 4 Introduction to XML Digital Signatures

Listing 4-10

Expanded XML
Signature syntax

<Signature>
<SignedInfo>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="file:///C:\check.txt">
<DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1"/>
<DigestValue>aZh8Eo2alIke1D5NNW+q3iHrRPQ=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>
MI6rfG4XwPFASDFfgAFsdAdASfasdFBVWxMrO/
Ta7nm5SfQ26KxK71Ch+4wHCMyxEkBxx2HP0/7J
tPiZTHNYTEWFtgWRvfwrfbvRFWvRWVnmi3ksdT
Q+zMtKjQAsdfJHyheAWErHtw3qweavfwtRHyK1
9ExbdFWQAEDafsf/f8I=
</SignatureValue>

</Signature>

04_CH04/DournaeeX 1/24/02 10:30 AM Page 119

XML Signature Types
Before we concentrate our efforts on the syntax of XML Signatures, it may
be useful to examine the three basic types of signatures in terms of their
parent-child relationships. Different applications require signature deliv-
ery in certain ways, with preferred signature types. Certain applications
require that an XML Signature be modeled as closely as possible to a real,
handwritten contract that includes embedded signatures in certain parts
within the original document. Other applications may process the original
data separate from the signature and may require that the original data be
removed from the signature itself. The original document tightly coupled
with the parent <Signature> element (the original document is parent or
child to <Signature>) is an enveloped or enveloping signature. The origi-
nal document kept apart from the <Signature> element (the original doc-
ument has no parent-child relationship to <Signature>) is a detached
signature. Intricate pictures of these types of signatures can be drawn, but
a simple way of looking at them is in terms of their XML structure and
parent-child relationships. Listing 4-11 shows the XML structure of these
three types. An enveloped signature must be child to the data being signed.
An enveloping signature must be parent to the data being signed. A
detached signature is neither parent nor child to the data being signed.

Interestingly, a single <Signature> instance may be described as a
combination of the above types. It is possible for a <Signature> to have
multiple <Reference> elements, each of which may point to data local to
the <Signature> block and kept remotely. Listing 4-12 shows an exam-
ple of a <Signature> block that is both enveloping and detached.

The two <Reference> elements shown in bold point to source
data that is located in different places. Because one piece of data (the
<original_document> element, also shown in bold and referenced via

XML Security120

Listing 4-11

Enveloped,
enveloping, and
detached XML
signatures

<!-- Enveloped Signature -->
<original_document>
<Signature> ... </Signature>

</original_document>
<!-- Enveloping Signature -->
<Signature>
<original_document>
</original_document>

</Signature>

<!-- Detached Signature -->
<Signature> ... </Signature>

04_CH04/DournaeeX 1/24/02 10:30 AM Page 120

its attribute) is inside the document, and one piece of data is external (the
reference to importantFile.xml) this signature has the dual properties
of being both enveloping and detached.

XML Signature Syntax and Examples
Listing 4-3 gives the core structure of an XML Signature. XML Schema
definitions and Document Type Definitions (DTDs) give the formal syntax
and grammar of all child elements of <Signature> as specified in the
XML Signature Recommendation. Rather than repeat the formal syntax
given in the recommendation, we will give informal descriptions that
attempt to document the nature and intent of each element. We have

121Chapter 4 Introduction to XML Digital Signatures

Listing 4-12 Enveloping and detached XML Signature

<Signature>
<SignedInfo>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="http://www.myserver.com/importantFile.xml">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>aZh8Eo2alIke1D5NNW+q3iHrRPQ=</DigestValue>

</Reference>
<Reference URI="#ImportantMessage">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>qGh8Eo2alJke1D7NNW+z3iHhRPF=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>
MI6rfG4dwPFASDFfgAFsdAdASfasdFBVWxMrO/
Ta7nFCSDAhnTRhy45vJSDcvadrtrEQW2HP0/7J
tPQTBFfwGVwfqewrfVfewgrtgvfbwdj7jujYdT
Q+zMtKRQGRE1grewrfht32rwhnbtygrwtRHyK1
3EFfdasreEDafsfgf8I=
</SignatureValue>
<Object>
<original_document>
<very_important_element id="ImportantMessage">
Milk Chocolate is better than Dark Chocolate!

</very_important_element>
</original_document>

</Object>
</Signature>

04_CH04/DournaeeX 1/24/02 10:30 AM Page 121

already seen examples of how some of the elements are used in the cre-
ation of a basic XML Signature. Here we will expand our examples and
discussion to cover all of the components of the XML Signature syntax.

XML Signature Syntax

The following section lists and describes the elements that comprise the
XML Signature Syntax.

The �Signature� Element

The parent element of an XML Signature is, of course, the <Signature>
element. This element identifies a complete XML Signature within a
given context. This parent element can contain a sequence of children as
follows: <SignedInfo>, <SignatureValue>, <KeyInfo>, and
<Object>. Note that the last two elements are optional. Two things are
important about the <Signature> element. First, an optional Id
attribute can be added as an identifier. This is useful in the case of mul-
tiple <Signature> instances within a single file or context. Secondly, the
<Signature> element must be laxly-schema valid to its constraining
schema definition. This type of validity is related to a best-effort attempt
at schema validation.

The �SignedInfo� Element

The next element in the sequence is the <SignedInfo> element. This
element is the most complex element (it has the most children) and
ultimately contains a reference to every data object that is to be included
in the signature. As the name implies, <SignedInfo> encompasses all
the information that is actually signed; that is, the signed information.
The contents of <SignedInfo> includes a sequence of the following
elements: <CanonicalizationMethod>, <SignatureMethod>, and one
or more <Reference> elements. The <CanonicalizationMethod> and
<SignatureMethod> elements describe the type of canonicalization
algorithm and signature algorithm used in the generation of the
<SignatureValue>. These two elements simply contain identifiers;
they do not actually point to any data used in signature generation. These
identifiers must be included as part of the <SignedInfo> to prevent
against substitution attacks. For example, if the <SignatureMethod>
element were explicitly defined outside the <SignedInfo> element, an

XML Security122

04_CH04/DournaeeX 1/24/02 10:30 AM Page 122

adversary could modify the signature method identifier and wreak havoc
with someone trying to properly validate the signature.

Another interesting and important element is the <Reference> ele-
ment. References define the actual data that we are signing. Most of the
added features of XML Signatures show up in the definition and usage of
<Reference> elements. Because of their importance, they are treated
separately in Chapter 5. For now it is enough to know that they define a
data stream that will eventually be hashed and possibly transformed. The
actual data stream is referenced by a URI. URIs are a universal mecha-
nism for referencing data locally or remotely. It is possible to omit the URI
identifier on, at most, one <Reference> element if the application can
determine the source data from another context. More discussion on URIs
can be found in Chapter 3.

Discussion of hierarchy can be confusing; a visual example often helps.
Listing 4-13 shows an example of the structure that we have been piecing
together so far.

Listing 4-13 focuses on three elements: <CanonicalizationMethod>,
<SignatureMethod>, and <Reference>. The <Canonicalization
Method> points to the canonicalization method required by the XML Sig-
nature Recommendation. This specific method is called Canonical XML
Without Comments. A more thorough discussion of Canonical XML is
given in Chapter 5. The URI used here (http://www.w3.org/TR/2001/
REC-xml-c14n-20010315) is merely an identifier, not a source of data or
an algorithm source. This can be quite confusing at first; URIs are used
both as identifiers and as data streams. The two URIs specified in
<CanonicalizationMethod> and <SignatureMethod> are used as

123Chapter 4 Introduction to XML Digital Signatures

Listing 4-13

The
<SignedInfo>
element and its
children

<Signature>
<SignedInfo>

<CanonicalizationMethod Algorithm=
"http://www.w3.org/TR/2001/REC-xml-c14n-20010315">
<SignatureMethod Algorithm=
"http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="http://www.rsasecurity.com">
<DigestMethod Algorithm=
"http://www.w3.org/2000/07/xmldsig#sha1"/>
<DigestValue>aZh8Eo2alIke1D5NNW+q3iHrRPQ=</DigestValue>

</Reference>
</SignedInfo>
...

</Signature>

04_CH04/DournaeeX 1/24/02 10:30 AM Page 123

identifiers, whereas the URI specified in the <Reference> element is an
actual data stream that is digested and then subsequently signed.

In addition to a public-key signature scheme, the XML Signature rec-
ommendation requires that HMAC be implemented as an option for the
<SignatureMethod>. An HMAC is an authentication code based on a
shared secret key. For cases where a shared secret exists between two par-
ties, an HMAC might be a better choice for signature authentication. The
computation of an HMAC is considerably faster than an expensive RSA or
DSA signing operation. Listing 4-14 shows an example of a <Signed-
Info> that utilizes HMAC as its <SignatureMethod>. In addition to the
identifier that describes the HMAC algorithm used (in this case the refer-
ent is HMAC-SHA1), the <SignatureMethod> element specifies an addi-
tional child element called <HMACOutputLength>. This element allows
for modification of the HMAC output. Additional cryptographic tradeoffs
are also possible by truncating the output of the HMAC. More information
can be found in RFC 2104, or the HMAC primer, in Chapter 2.

Notice in Listing 4-14 the use of a local reference for the source file to
sign. While it is possible to sign a file that is kept locally, this may cause
problems when the recipient tries to verify the signature. When signature
verification occurs, the <Reference> elements determine where the data
to verify comes from. A remote recipient is unlikely to have access to the
same file resource kept on a local machine. With XML Signatures, it is
possible to package the original data inside the <Signature> element
with an enveloping signature (not shown in Listing 4-14; the signature
shown is a detached signature) to avoid this problem.

XML Security124

Listing 4-14

Using HMAC for
the <Signature
Method>

<Signature>
<SignedInfo>
<CanonicalizationMethod Algorithm=
"http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
<SignatureMethod Algorithm=
"http://www.w3.org/2000/09/xmldsig#hmacsha1">
<HMACOutputLength>80</HMACOutputLength>

</SignatureMethod>
<Reference URI="file:///C:\signme.xml">
<DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1"/>
<DigestValue>lsn6Q7VlZGRt1norERfoIelQHJA=</DigestValue>

</Reference>
</SignedInfo>

...
</Signature>

04_CH04/DournaeeX 1/24/02 10:30 AM Page 124

Finally, much like its parent element <Signature>, the <Signed-
Info> element also has a provision for an Id attribute. This attribute can
be used as an identifier and may be referenced from other <Signature>
elements. Following the <SignedInfo> element is the <Signature-
Value> element. We have already seen examples of this element. It is lit-
tle more than a container to hold an encoded binary signature value. The
encoding is Base-64 ASCII encoding as specified in RFC 2045.

The �KeyInfo� Element

Following <SignatureValue> is the optional <KeyInfo> element. The
<KeyInfo> element is a powerful element that allows for the integration
of trust semantics within an application that utilizes XML Signatures.
Simply put, a <KeyInfo> element contains specific information used to
verify an XML Signature. The information can be explicit, such as a raw
public key or an X.509 certificate, or the information can be indirect and
specify a remote public-key information source. <KeyInfo> is a powerful
element because it allows a recipient to verify the signature without hav-
ing to explicitly hunt for the verification key. This feature is useful for
automating signature verification, but this type of element can also be
dangerous. This element moves the problem of trust away from the sig-
nature syntax and into the domain of the application. An application that
is receiving the signature must know how to make proper trust decisions
based on any included <KeyInfo> material. A receiving application must
know when to trust material inside <KeyInfo> and when to discard it.
Without explicit trust semantics, any XML Signature with a proper
<KeyInfo> element will successfully verify, giving the recipient little rea-
son to trust the sender.

One way to manage trust in an application that relies on XML Signa-
tures is to delegate to a trust engine that takes as input a <KeyInfo> ele-
ment and makes a trust decision based on its contents. Figure 4-1 shows
how an input XML document that contains a <Signature> element can
be parsed to retrieve the <KeyInfo> element. The <KeyInfo> element in
this example contains an X.509 certificate that is subsequently passed off
to a trust engine that conveys a binary trust decision to the signature ver-
ification component. The example is simple certificate path validation; the
certificate inside <KeyInfo> is checked against a store of trusted root
certificates. This trust engine concept is one of the defining facets of
XKMS.

125Chapter 4 Introduction to XML Digital Signatures

04_CH04/DournaeeX 1/24/02 10:30 AM Page 125

Certificate path validation makes for a convenient example, but it is
not the only way of asserting trust over public key material. XML
Signatures allow for a wide array of components within <KeyInfo>.
Table 4-2 describes the various element choices for <KeyInfo> as defined
by the current XML Signature Recommendation.

Multiple child elements included within a single <KeyInfo> must all
refer to the same verification key (with the exception of a certificate
chain). This restriction prevents ambiguities during signature verifica-
tion. The host of available child elements for <KeyInfo> allows for a high
degree of application-specific trust processing. Furthermore, it is permis-
sible for an application to add its own custom elements, provided they
reside within a nonconflicting namespace and do not break the compati-
bility of the existing elements. Not all elements are required in compliant
implementations of XML Signatures. Only <KeyValue> is required,
whereas <RetrievalMethod> is recommended. The <KeyValue> ele-
ment is designed to hold a raw RSA or DSA public key with child ele-
ments, <RSAKeyValue> and <DSAKeyValue>, respectively. Public keys
inside <KeyValue> are represented by their Base-64 encoded raw numer-
ical components. Well-defined BER encoded formats already exist for RSA
and DSA keys. These are not explicitly used in conjunction with the
<KeyValue> element, although they might be used in the context of an
application specific, custom element. Listing 4-15 shows an example of a
standard public key format as defined by X.509.

To contrast the binary format above, Listing 4-16 shows how a similar
RSA public key would be represented as part of a <KeyValue> element.

XML Security126

XML
Parser

Trust
Engine

Root
Certificate
Store

Signature
Validation

Yes/No

<Signature>
—
<KeyInfo>
</KeyInfo>

</Signature>

<KeyInfo>
 <X509Data>
 </X509Data>
</KeyInfo>

<Signature>
</Signature>

Figure 4-1

A simple Trust
Service

04_CH04/DournaeeX 1/24/02 10:30 AM Page 126

127Chapter 4 Introduction to XML Digital Signatures

Element Name Description

<KeyName> A simple text-identifier for a key name.

<KeyValue> Either an RSA or DSA public key.

<RetrievalMethod> Allows for the remote reference of key
information.

<X509Data> X.509 certificates, names, or other related data.

<PGPData> PGP related keys and identifiers.

<SPKIData> SPKI keys, certificates, or other SPKI-related
data.

<MgmtData> Key agreement parameters (such as Diffie-
Hellman parameters).

Table 4-2

<KeyInfo> Child
Element Choices

Listing 4-15

ASN.1
interpretation of
an RSA public
key as defined by
X.509

0 30 90: SEQUENCE {
2 30 13: SEQUENCE {
4 06 9: OBJECT IDENTIFIER rsaEncryption (1 2 840 113549 1 1

1)
15 05 0: NULL

: }
17 03 73: BIT STRING 0 unused bits

: 30 46 02 41 00 BA EA 11 7D D0 8D 35 7D 69 9D 5D
: F7 2F 5C CE 7A 1D 5E 75 52 E8 F4 4A 02 67 D5 59
: 6A 43 E9 AF 4D 3E 1E 2E 42 0C 09 32 CA 5C 0E 21
: 4C 44 97 86 EC 47 6D 6F D0 21 AB DA 54 FA 22 DC
: 2F A3 E5 AD F7 02 01 11
: }

Listing 4-16

<KeyValue>
element that
contains an
RSA key

<KeyValue>
<RSAKeyValue>
<Modulus>uuoRfdCNNX1pnV33L1zOeh1edVLo9EoCZ9VZakPpr00
+Hi5CDAkyylwOIUxEl4bsR21v0CGr2lT6Itwvo+Wt9w==
</Modulus>
<Exponent>EQ==</Exponent>

</RSAKeyValue>
</KeyValue>

04_CH04/DournaeeX 1/24/02 10:30 AM Page 127

You may wonder why the standard public key format defined by X.509
is not used by XML Signatures. After all, X.509 is a widely deployed stan-
dard, and many existing applications can already handle the BER
encoded raw binary public key. The response falls within the scope of
extensibility. A rather heavyweight ASN.1 parser must be used to decode
the standard X.509 public key format. This is not the case with the XML
markup. Because of its portable nature, any XML parser can successfully
parse the <KeyValue> element, even if it does not have an XML Signa-
ture implementation to rely on. The extensible nature of XML Signatures
allows for the addition of a custom element for those applications that
wish to use the binary RSA key format.

Another useful <KeyInfo> child element is the <X509Data> element.
This element can bear a host of child elements that all relate to X.509
certificates. The selections of elements for this type reflect common meth-
ods of uniquely identifying a certificate. Table 4-3 lists the possible child
elements for <X509Data>. Any <X509Data> element must contain one
or more of the first four child elements: <X509IssuerSerial>,
<X509SKI>, <X509SubjectName>, <X509Certificate>, or a single
<X509CRL> element.

When a Certificate Authority issues a certificate, the certificate must
be given a unique serial number.

This uniqueness constraint is not shared across distinct Certificate
Authorities. For example, two separate Certificate Authorities may issue
two different certificates with matching serial numbers. Consequently, a
proper primary key for a certificate must include not only a serial number
but also an issuer name. This is the purpose of the <X509IssuerSerial>
element—it is simply an element containing an issuer distinguished

XML Security128

Element Name Description

<X509IssuerSerial> X.509 issuer distinguished name and associated
serial number

<X509SKI> X.509 SubjectKeyIdentifier extension

<X509SubjectName> X.509 subject distinguished name

<X509Certificate> X.509v3 certificate

<X509CRL> X.509 certificate revocation List

Table 4-3

<X509Data>
Child Element
Choices

04_CH04/DournaeeX 1/24/02 10:30 AM Page 128

name and serial number pair that uniquely identifies the certificate con-
taining the public verification key. Other methods of uniquely identifying
a signer’s certificate include the use of the <X509SubjectName> element
and the <X509SKI> element. A subject name uniquely identifies a partic-
ular end-entity, but a given end-entity might have been issued multiple
certificates from different Certificate Authorities, or may have several dif-
ferent types of certificates altogether. These possibilities imply that dif-
ferent public keys may exist among an end-entities possessive certificate
collection. To resolve the proper public key within the scope of a given sub-
ject name, the use of the <X509SKI> element may prove useful. This ele-
ment is the SubjectKeyIdentifier extension as defined by RFC 2459.
It is intended to be a unique identifier for a specific public key within an
application context. An <X509SKI> element is generated by applying a
SHA-1 hash directly to the encoded subjectPublicKey bit string. This
technique creates a unique identifier out of the public key itself. A more
concise hash is also specified; the shorter version uses a fixed, 4-bit value
with the last 60 bits of the SHA-1 hash of subjectPublicKey.

Finally, instead of specifying unique identifiers or pointers to certifi-
cates that need to be looked up in an X.500 directory, the verification cer-
tificate can be included with the use of the <X509Certificate> element.

You may ask how these binary format certificate components (distin-
guished names) are stored and encoded within the text-based XML Sig-
nature elements and tags. We have already argued against the use of a
heavyweight ASN.1 parser that would be required to process these com-
ponents during signature verification. Rather than dealing with the DER
encoded form of the certificate components directly, the XML Signature
Recommendation relies on the ASN.1 to string conversion as specified by
RFC2253. This particular RFC defines an algorithm and format for con-
verting ASN.1 distinguished names to UTF-8 string values. For example,
Listings 4-17 and 4-18 show the ASN.1 interpretation of a distinguished
name followed by its string representation as defined by RFC2253.

Distinguished names are intended to be unique identifiers. The string
representation in Listing 4-18 is much more compact and ideal for an
XML application, but it is not necessarily unique. This string representa-
tion does not absorb all of the information contained within the binary for-
mat. For example, if we were to try to reverse the transformation and
encode the string in binary, we would lose information such as object iden-
tifiers (OIDs) as well as the ASN.1 types used to encode the values (such
as, PrintableString). Because of this uniqueness constraint, a single

129Chapter 4 Introduction to XML Digital Signatures

04_CH04/DournaeeX 1/24/02 10:30 AM Page 129

<X509SubjectName> element used within an <X509Data> element may
not identify the proper verification key in all circumstances.

Some other important features and restrictions need to be recognized
when using the <X509Data> element. First, this element is explicitly
extensible. It is possible to add custom types from an external namespace
for use within <X509Data>. For example, the <X509Data> element does
not include a provision for rigorous certificate messaging standards such
as PKCS#7 or PKCS#12. Support for these can be added as a custom ele-
ment. Secondly, the use of the possible child elements is somewhat restric-
tive. Care was taken to prevent situations in which two different public
keys are referenced from within a single <X509Data> element. Whereas
only a single <KeyInfo> element is allowed in an XML Signature, the
number of <X509Data> elements is unbounded. This added extensibility
demands restrictions to prevent references to different public keys and
processing redundancy. The first point regarding restrictions on the
<X509Data> element is that it is quite possible to have different certifi-

XML Security130

Listing 4-17

ASN.1
interpretation of
a name object

SEQUENCE {
SET {
SEQUENCE {
OBJECT IDENTIFIER countryName (2 5 4 6)
PrintableString 'GB'

}
SEQUENCE {
OBJECT IDENTIFIER organizationName (2 5 4 10)
PrintableString 'Sceptics'

}
SEQUENCE {
OBJECT IDENTIFIER commonName (2 5 4 3)
PrintableString 'David Hume'

}
}

}

Listing 4-18

String
representation as
defined by
RFC2253

CN=David Hume+O=Sceptics+C=GB

04_CH04/DournaeeX 1/24/02 10:30 AM Page 130

cates that contain the same public key. If any combination of
<X509IssuerSerial>, <X509SKI>, and <X509SubjectName> appear
within a single <X509Data> element, they must refer to the same certifi-
cate or set of certificates that contain the proper verification key. Fur-
thermore, all elements that refer to a particular individual certificate
must be grouped together inside a single <X509Data> element. If the
actual certificate is also present, it must be in the same <X509Data> ele-
ment. If any such elements (<X509IssuerSerial>, <X509SKI>, and
<X509SubjectName>) refer to a particular verification key but different
certificate(s), they may be split into multiple <X509Data> elements.
Finally, any <X509Data> element may also include a Certificate Revoca-
tion List (CRL). The format of the CRL is simply a standard X.509 CRL
that has been Base-64 encoded for text-based XML element compatibility.
CRLs can be used as additional semantics for determining trust. Readers
unfamiliar with CRLs can refer to the primer in Chapter 2.

Listing 4-19 shows an example of a <KeyInfo> element containing a
single <X509Data> element that uses a Base-64 encoded X.509 certificate
for an explicit verification key.

The final <KeyInfo> child that will be discussed is the <Retrieval-
Method> child element. This element is similar to a <Reference> ele-
ment in that it uses URI syntax to identify a remote resource. In this case,

131Chapter 4 Introduction to XML Digital Signatures

Listing 4-19

An example
�KeyInfo�
element

<KeyInfo>
<X509Data>
<X509Certificate>MIICcjCCAdugAwIBAgIQxo8RBl7oeoBUJR7
1341R/DANBgkqhkiG9w0BAQUFADBsMQswCQYDVQQGEwJVUzEPMA0
GA1UECBMGQXRoZW5zMRUwEwYDVQQKEwxQaGlsb3NvcGhlcnMxETA
PBgNVBAMTCFNvY3JhdGVzMSIwIAYJKoZIhvcNAQkBFhNzb2NyYXR
lc0BhdGhlbnMuY29tMB4XDTAxMDIxNjIzMjgzNVoXDTAyMDIxNjI
zMjgzNVowbzELMAkGA1UEBhMCQ0ExDzANBgNVBAgTBkF0aGVuczE
TMBEGA1UEChMKUGhpbG9zb3BoeTEPMA0GA1UEBxMGQXRoZW5zMQ4
wDAYDVQQDEwVQbGF0bzEZMBcGA1UEDBMQRm91bmRlciBvZiBMb2d
pYzCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA1b2CY7+zN4y
KicJRLgnTLVFXMcw9Xo9jmHPX6h7sTw+W2Ld3PRZSgXlt2vkAUcU
sA49dGMTPKg/JJjvqu+wWkYbaQ39GbSvmwsO8GTpQERleuGKrptY
Y/DGU0YFdONyZS7KZ5l1KMKp54PyQNAkE9iQofYhyOfiHZ29kkEF
VJ30CAwEAAaMSMBAwDgYDVR0PAQH/BAQDAgSQMA0GCSqGSIb3DQE
BBQUAA4GBACSzFR9DWlrc9sceWaIo4ZSdHF1P3qe5WMyLvCYNyH5
FmrvKZteJ2QoiPw+aU/QX4d7sMuxGONYW4eiKTVSIfl6uNaMECLp
Tfg+rZJHVT+2vy+SwfOKMZOFTgh/hGnlNdwtjEku2hIZZlGEF4+n
6Ss4C/K+gp5K1UmQYvoyXxPK
</X509Certificate>

</X509Data>
</KeyInfo>

04_CH04/DournaeeX 1/24/02 10:30 AM Page 131

the resource being identified is keying material for use in signature veri-
fication. The <RetrievalMethod> element works by specifying a URI,
optional type attribute, and an optional set of transforms. We will omit
discussion of the transforms for now and return to that topic in Chapter 5,
where the details of the <Reference> element are further discussed.
When the URI specified in a <RetrievalMethod> is de-referenced, the
result is an XML document (except for a single special case) that is any
one of the child elements of <KeyInfo>. That is, a <RetrievalMethod>
describes the location of any element listed in Table 4-2 (except for
<RetrievalMethod> itself). An example usage of <RetrievalMethod>
is shown in Listing 4-20.

The example in Listing 4-20 denotes the location of a certificate chain.
The URI points to an XML file located on a remote server, and the
optional Type element is utilized to add information about what kind of
information is inside certChain.xml. Chains of certificates are often
necessary to properly identify a verification key. For example, if a given
end-entity has a certificate that was signed by an intermediate Certificate
Authority (such as, the authority who signed the certificate is itself autho-
rized by another certificate authority), a chain of certificates may be
required for a trust engine to properly complete certificate path valida-
tion. A trust engine may not have enough information about intermediate
certificate authorities that eventually signed the actual verification key.
In this case, to complete the path validation, a proper bridge of certificates
must be placed between the client’s key and the certificate authorities
accepted by the trust engine.

The content of certChain.xml is not in a special format; it relies
instead on the child elements of <X509Data> as a means to structure a
certificate chain. The only restriction given by the <RetrievalMethod>
element is that the URI must de-reference to a well-formed XML file with
some <KeyInfo> child as the root element (again, except for one special

XML Security132

Listing 4-20 A �RetrievalMethod� element that describes the location of �X509Data�

<KeyInfo>
<RetrievalMethod Type="http://www.w3.org/2000/09/xmldsig#X509Data"
URI="http://www.myserver.com/certChain.xml"/>

</KeyInfo>

04_CH04/DournaeeX 1/24/02 10:30 AM Page 132

case). The contents of certChain.xml could have been any valid <Key-
Info> child. The <X509Data> element is shown as a rather arbitrary
example. A certificate chain can be modeled as a single <X509Data> ele-
ment that contains multiple <X509Certificate> elements. This is
shown in Listing 4-21.

For brevity, Listing 4-21 omits the Base-64 encoded certificate content
of each <X509Certificate> element. The single special case previously
noted is the option to have <RetrievalMethod> de-reference to a binary
X.509 certificate, and not an XML document. This particular type of
<RetrievalMethod> can be useful for XML-unaware applications that
rely exclusively on standard X.509 binary certificates. In this case, the
type attribute of <RetrievalMethod> could be set to http://www.w3.
org/2000/09/xmldsig#rawX509Certificate. This URI denotes an
optional identifier. The type identifier could have been left out if the appli-
cation already has knowledge about the type of <KeyInfo> element that
will be sent when the source URI is de-referenced.

One advantage of using <RetrievalMethod> to reference a remote
certificate chain shows up when multiple <Signature> elements require
the same verification key, and a certificate chain denotes that verification
key. There is no restriction on the number of <Signature> elements that
may appear within a given file or context. Therefore, a single signer could
generate a number of such <Signature> elements that rely on a common
certificate chain for verification. Listing 4-22 shows how this might be
packaged in the case when <RetrievalMethod> is not used.

Listing 4-22 shows that we have two arbitrary <Signature> elements
that reference the same certificate chain. The entire encoded contents of
each <X509Certificate> elements are omitted for brevity. A Base-64
encoded certificate typically represents on average about 1500 bytes.
For all six such encoded certificates we are using a lot of space in our
<Signature> elements, around 9KB total, half of which is redundant

133Chapter 4 Introduction to XML Digital Signatures

Listing 4-21

An example
certificate chain
using children of
�X509Data�

<!-- certChain.xml
This file represents a certificate chain.
No ordering is explicitly implied. -->
<X509Data>
<X509Certificate> ... <X509Certificate>
<X509Certificate> ... <X509Certificate>
<X509Certificate> ... <X509Certificate>

</X509Data>

04_CH04/DournaeeX 1/24/02 10:31 AM Page 133

information. If we instead rely on <RetrievalMethod> to denote the cer-
tificate chain, the same <Signature> elements can be represented with
significant space savings for each <KeyInfo> element. Listing 4-23 shows
what these <Signature> elements might look like.

The <Signature> elements shown in Listing 4-23 are more compact
than the same elements shown in Listing 4-22. There are many ways to
take advantage of the possible child elements offered by <KeyInfo>. This
element is a rich source of examples because many different methods
exist for identifying a verification key and determining trust. The exten-
sible nature of <KeyInfo> itself allows for other XML technologies that
provide trust semantics to hook into the XML Signature syntax. For now
we will leave the additional features of <KeyInfo> and proceed to the
remaining element in the XML Signature syntax—the <Object> element.

The �Object� Element

One way to introduce the <Object> element is to discuss some of the
additional properties required by the nature of a digital signature. Let us
return for a moment to the simple electronic payment authorization

XML Security134

Listing 4-22

Two
�Signature�
elements that
reference a
certificate chain
using
�X509Data�

<Signature Id="Purchase Order 1" ... >
...
<KeyInfo>

<X509Data>
<X509Certificate> MIIDHzCCAgc ... </X509Certificate>
<X509Certificate> MIIC2aCWZvc ... </X509Certificate>
<X509Certificate> MIIDZTEcCCA ... </X509Certificate>

</X509Data>
</KeyInfo>

...
</Signature>
<Signature Id="Purchase Order 2" ... >
...
<KeyInfo>

<X509Data>
<X509Certificate> MIIDHzCCAgc ... </X509Certificate>
<X509Certificate> MIIC2aCWZvc ... </X509Certificate>
<X509Certificate> MIIDZTEcCCA ... </X509Certificate>

</X509Data>
</KeyInfo>

...
</Signature>

04_CH04/DournaeeX 1/24/02 10:31 AM Page 134

shown in Listing 4-6. If we assume that L. Meyer signs this electronic
check, the paperboy may take the check to a bank and have the bank
transfer funds from L. Meyer’s account to the paperboy’s account. If the
paperboy is a particularly malicious character, he may cash the check over
and over again by keeping copies of it. He might take it to a different
bank, or he may cash the copies slowly over time. The signature will
always verify, and the bank will have no way to know if the paperboy is
getting new checks or using the same checks repeatedly. A time-stamp is
often used to solve this type of problem. If a time-stamp is signed along
with the check, the bank can determine if the time-stamp is valid or if a
check has already been cashed with that time-stamp. The addition of a
time-stamp adds an idempotent property to the check. Repeatedly cashing
the check will have the same effect on the paperboy’s account as cashing
it a single time.

Additional properties about a signature can be useful in preventing the
fraudulent use of digital signatures. XML Signatures provide a standard
way of adding additional semantics in the form of a <Signature-
Properties> element. XML Signatures do not provide a way to interpret
these additional properties. For example, there is no provision for an XML
Signature to validate the meaning of a time-stamp. An application that
verifies XML Signatures must know how to understand when a time-
stamp is valid and invalid, and what to do when two signatures arrive
with the same time-stamp. The use of additional assertions about

135Chapter 4 Introduction to XML Digital Signatures

Listing 4-23 Two �Signature� elements that reference a certificate chain using
�RetrievalMethod�

<Signature Id="Purchase Order 1" ... >
...
<KeyInfo>
<RetrievalMethod Type="http://www.w3.org/2000/09/xmldsig#X509Data"
URI="http://www.myserver.com/purchaseOrderChain.xml"/>

</KeyInfo>
...
</Signature>
<Signature Id="Purchase Order 2" ... >
...
<KeyInfo>
<RetrievalMethod Type="http://www.w3.org/2000/09/xmldsig#X509Data"
URI="http://www.myserver.com/purchaseOrderChain.xml"/>

</KeyInfo>
...
</Signature>

04_CH04/DournaeeX 1/24/02 10:31 AM Page 135

signatures is useful enough to warrant a specific element for this purpose.
Rather than add another child element to <Signature>, it is more use-
ful to define a generic container that can hold a plethora of different ele-
ments. This is the job of the <Object> element. It defines a generic
container that may contain other useful elements like <Signature-
Properties> and <Manifest>. The <Manifest> element has several
interesting uses that will be discussed in the last section. The <Object>
element can contain data of any type. The only obvious restriction is that
if binary data is included within an <Object> element, it must be
encoded in a printable format suitable for representation in an XML doc-
ument. This usually means Base-64 encoding, although custom encoding
schemes are not forbidden by XML Signatures. The <Object> element
has three optional attributes: an Id, MimeType, and Encoding. The Id is
used as a unique way of referencing the <Object> element from other
places inside the <Signature> element. The MimeType is an advisory
type that indicates to a processing application the type of data that is
inside the object, independent of how the data is encoded. The Encoding
attribute is a URI identifier that describes the type of encoding mecha-
nism used. It may be difficult to see how this fits together without an
example. Listing 4-24 shows how one might include a binary GIF file as
part of an enveloping signature with the use of an <Object> element.

Note in Listing 4-24 the use of the <Reference> element, shown in
bold. This element uses the optional Type attribute that identifies the
type of object pointed to; in this case, an Object type. This attribute is
optional and may be omitted if the application can determine the type
through some other means. The URI attribute used in the <Reference>
element is a mechanism of pointing to the XML resource containing that
attribute; in this case, it is the element that has "ImportantPicture"
as an Id attribute value. The <Object> element shown uses all three
optional attributes. Notice that the MimeType does not specify the con-
tent-type of the information inside the <Object> elements, but instead
specifies the type of data in a broad sense—MimeType is used only as a
convenient identifier. For more information on MIME and MIME types,
the reader should reference RFC2045.

The encoded binary .GIF file resides inside the <Object> element and
is included in the signature because it is referenced by a <Reference>
element. The data is not signed directly, but indirectly; a hash of the data
inside the <Object> is signed (including the <Object> tags). The only
part of an XML Signature that actually has a signature algorithm applied
directly to it is the <SignedInfo> element. Because the <Object> tags

XML Security136

04_CH04/DournaeeX 1/24/02 10:31 AM Page 136

are digested along with the encoded data, a problem with signature valid-
ity can result if the data inside the <Object> element is moved. For
example, assume that the .GIF file we are signing as part of our enveloped
signature is moved to a remote location such as a Web server or a distrib-
uted file system. If this .GIF file is encoded and then digested, the old
digest value will not match because it was created with the inclusion of
the <Object> tags. This problem can be circumvented with the use of a
transformation that removes the <Object> tags before the signature is
created. Signature transformations used to accomplish element filtering
are discussed in Chapters 5 and 6. The problem of moving data out of a
signature and maintaining signature validity is quite subtle. An objector
might make the following claim: if we move the data object out of the
<Signature> element, we must also change the <Reference> element
that points to this data. If we change this <Reference> element, the
<SignatureValue> will change because the structure and context of
each <Reference> element is signed directly during core signature
generation. Put another way, the movement of data necessitates a
change in the <Reference> element that points to it, thereby altering
the <SignatureValue> because every <Reference> element is signed

137Chapter 4 Introduction to XML Digital Signatures

Listing 4-24 An enveloping signature over a .GIF file

<Signature>
<SignedInfo>
<Reference Type="http://www.w3.org/2000/09/xmldsig#Object"
URI="#ImportantPicture">

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>HfRNHKuQrDiTy3XABMFbyteg3CG=</DigestValue>

</Reference>
</SignedInfo>
<Object Id="ImportantPicture" MimeType="image/gif"
Encoding="http://www.w3.org/2000/09/xmldsig#base64">

aWcgQmxha2UncyBBdXRoZW50aWNhdGlvbiBTZXJ2aWNlMRQwEgYDVQQLEwtFbmdp
bmVlcmluZzEWMBQGA1UEAxMNQmlnIEJhZCBCbGFrZTEcMBoGCSqGSIb3DQEJARYN
YmJiQGJiYmFzLmNvbTAeFw0wMDA2MjAyMTEzMzVaFw0xMTA2MDMyMTEzMzVaMH4x
CzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpTb21lLVN0YXRlMQ8wDQYDVQQKEwZTZXJ2
ZXIxFDASBgNVBAsTC1NlcnZlciBDZXJ0MRMwEQYDVQQDEwpTZXJ2ZXJDZXJ0MR4w
HAYJKoZIhvcNAQkBFg9zZXJ2ZXJAY2VydC5jb20wgZ8wDQYJKoZIhvcNAQEBBQAD
gY0AMIGJAoGBAMg7Y9ZByAKLTf4eOaNo8i5Ttge+fT1ipOpMB7kNip+qZR2XeaJC
iS7VMetA5ysX7deDUYYkpefxJmhbL2hO+hXj72JCY0LGJEKK4eIf8LTR99LIrctz

</Object>
...
</Signature>

04_CH04/DournaeeX 1/24/02 10:31 AM Page 137

directly. This argument is quite convincing, but incorrect. The reason is
that the nature of a <Reference> element makes it acceptable to omit
the URI attribute on at most one <Reference> element, if it is assumed
that the application knows in advance where the data source resides. List-
ing 4-25 shows an example of a <Signature> that can maintain validity
if the data inside the <Object> tags is moved elsewhere.

In Listing 4-25, the data that we are signing happens to be inside the
<Object> element. This is arbitrary, and the omission of the URI
attribute from the <Reference> element implies that the application
knows where to get the data. Other elements that can reside inside
<Object> (other than arbitrary Base-64 encoded data) may avoid this
problem with the careful use of attribute identifiers. The use of the
<SignatureProperties> element within an <Object> element is
similar to Listing 4-24, but many of the optional attributes can be omitted
because the identifying attributes are now stored as part of the
<SignatureProperties> element. The use of this element is shown in
Listing 4-26. The properties listed inside <SignatureProperties> are
arbitrary and fictional,—any application-defined semantics can be placed
inside this element. In Listing 4-26 we will think up a simple arbitrary

XML Security138

Listing 4-25 A �Signature� element that omits the URI attribute in the <Reference>
element

<Signature>
<SignedInfo>
<Reference>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>HfRNHKuQrDiTy3XABMFbyteg3CG=</DigestValue>

</Reference>
</SignedInfo>
<Object Id="ImportantPicture" MimeType="image/gif"
Encoding="http://www.w3.org/2000/09/xmldsig#base64">

aWcgQmxha2UncyBBdXRoZW50aWNhdGlvbiBTZXJ2aWNlMRQwEgYDVQQLEwtFbmdp
bmVlcmluZzEWMBQGA1UEAxMNQmlnIEJhZCBCbGFrZTEcMBoGCSqGSIb3DQEJARYN
YmJiQGJiYmFzLmNvbTAeFw0wMDA2MjAyMTEzMzVaFw0xMTA2MDMyMTEzMzVaMH4x
CzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpTb21lLVN0YXRlMQ8wDQYDVQQKEwZTZXJ2
ZXIxFDASBgNVBAsTC1NlcnZlciBDZXJ0MRMwEQYDVQQDEwpTZXJ2ZXJDZXJ0MR4w
HAYJKoZIhvcNAQkBFg9zZXJ2ZXJAY2VydC5jb20wgZ8wDQYJKoZIhvcNAQEBBQAD
gY0AMIGJAoGBAMg7Y9ZByAKLTf4eOaNo8i5Ttge+fT1ipOpMB7kNip+qZR2XeaJC
iS7VMetA5ysX7deDUYYkpefxJmhbL2hO+hXj72JCY0LGJEKK4eIf8LTR99LIrctz

</Object>
...
</Signature>

04_CH04/DournaeeX 1/24/02 10:31 AM Page 138

XML format for the electronic check shown in Listing 4-6 and include this
in an XML enveloping signature along with a <SignatureProperties>
element. The use of the <SignatureProperties> element here is to con-
vey assertions about the electronic check. Note that we could have signed
the check in its native format (text file), but casting it as XML makes for
a better example because the information inside the check is immediately
visible to the reader. We are leaving out additional elements and features

139Chapter 4 Introduction to XML Digital Signatures

Listing 4-26 Use of �SignatureProperties� to convey signature assertions

<Signature Id="SignedCheckToPaperBoy">
<SignedInfo>

<Reference URI="#CheckToPaperBoy">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>3846JEYbJymGoDfgMRaH5PYeNQv=</DigestValue>

</Reference>
<Reference URI="#FictionalSignatureAssertions"
Type="http://www.w3.org/2000/09/xmldsig#SignatureProperties">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>r3653rvQTO0gKtMyu4VfeVu9ns=</DigestValue>

</Reference>
</SignedInfo>
<Object>

<ElectronicCheck Id="CheckToPaperBoy">
<RecipientName>PaperBoy</RecipientName>
<SenderName>L.Meyer </SendName>
<AccountNumber>765121-2420</AccountNumber>
<Amount>$2</Amount>

</ElectronicCheck>
</Object>
<Object>
<SignatureProperties>
<SignatureProperty Id="FictionalSignatureAssertions"

Target="#SignedCheckToPaperBoy">
<Assertion>
<GenerationTime>
Mon Jun 11 19:10:27 UTC 2001

</GenerationTime>
</Assertion>
<Assertion>

<Note> Can only be cashed at Bank Foobar </Note>
</Assertion>
<Assertion>
<ValidityDays> 90 </ValidityDays>

</Assertion>
</SignatureProperty>

</SignatureProperties>
</Object>

</Signature>

04_CH04/DournaeeX 1/24/02 10:31 AM Page 139

XML Security140

that make Listing 4-26 a proper XML Signature. The intent here is to
show how one might use the <Object> element.

Notice the use of the two <Reference> elements. The first
<Reference> element points to the electronic check with the use of an
attribute identifier, CheckToPaperBoy. The digest value appearing in
this first <Reference> element is the digest of the <Object> element
that contains the <ElectronicCheck> element. More about how this
processing is accomplished will be discussed in Chapter 5, when we
look at XML Signature processing. Unlike Listing 4-24, when both
<References> are digested, the <Object> tags are not included in the
digest calculation. This is because the data pointed at is referenced by an
XML attribute that points directly at the desired XML element, effectively
skipping the <Object> tags.

The second <Reference> element shown in Listing 4-26 identifies
our set of fictional signature assertions with the attribute identifier
FictionalSignatureAssertions. Notice also that we have used the
Type attribute to denote the type of object that we are pointing to. This is
an optional attribute but may be useful for applications that require addi-
tional context during signature processing. A <SignatureProperties>
element may have an unbounded number of child <Signature
Property> elements. These child elements provide a natural way to
create groups of signature assertions that may be applied to distinct
signatures. The <SignatureProperty> element has two attributes: an
optional Id and a required Target attribute. If <SignatureProperty>
is used, the target signature to which it applies must be specified. In our
example, the Target specified is "SignedCheckToPaperBoy," which is
the identifying attribute of the parent <Signature> element used in
Listing 4-26. The Target element is required to ensure a strong relation
between a set of signature assertions and the actual signature. Mis-
matching assertions and signatures can be a security risk; if this element
were optional, a group of assertions within a file that contained multiple
<Signature> elements might be ambiguous. It would be difficult to know
which assertions were intended for which <Signature> elements.

The <SignatureProperty> element contains a set of assertions
about the electronic check. It is up to the application to process these cor-
rectly and make proper trust decisions based on their semantics. The
assertions shown are completely fictional.

04_CH04/DournaeeX 1/24/02 10:31 AM Page 140

The �Manifest� Element

The <Manifest> element is another well-defined child element of
<Object>. This element is powerful and useful for providing flexible solu-
tions for various signature processing and signature packaging complica-
tions. The term “manifest” is used here again and is distinct from the
abstract manifest discussed in Definition 4.2. The <Manifest> element
used here has a similar meaning—it is simply another collection of
<Reference> elements, much like the <SignedInfo> element. The
main difference between the two lies in the amount of processing that is
required. The <SignedInfo> element is a defining part of the XML Sig-
nature and is the actual data that has a signature algorithm applied to it.
Consequently, it is also the element that is verified via the signature
transformation during the verification process. The <Manifest> element
contrasts <SignedInfo> in that its contents are not explicitly verified,
only its structure. There is no requirement to actually verify any
<Reference> elements specified inside a <Manifest> element. One
might think of <SignedInfo> as more constrained in its semantics, while
<Manifest> is more relaxed. A <Manifest> element is a collection
of resources and is also a resource itself. If used in a <Signature> ele-
ment, it is explicitly specified as a <Reference> inside <SignedInfo>.
Listing 4-27 shows how a <Manifest> element might be used inside
<Signature>.

The best way to understand Listing 4-27 is to first direct your attention
to the <Manifest> element. This element contains a list of <Reference>
elements and uses an Id attribute much like previously discussed ele-
ments. The number of <Reference> elements allowed in a <Manifest>
is unbounded, but the element must contain at least one <Reference>
element. In Listing 4-27, the references point to two binary files that
reside on a remote server. In this example, we can assume that the files
represent some type of important report specified in two formats, GIF for-
mat and PDF. When we refer to the <Manifest> from the <Reference>
element inside <SignedInfo>, we are really signing the canonical form
of the <Manifest> element itself. We are signing the structure of the
<Manifest> element and not the binary data referenced by the
<Manifest> element. This means that when we verify the signature at a
later time, the integrity of the actual data referenced by the <Manifest>
element (such as, one of the report files is altered) may be lost, but the

141Chapter 4 Introduction to XML Digital Signatures

04_CH04/DournaeeX 1/24/02 10:31 AM Page 141

signature will still verify if the <Manifest> structure remains intact. In
other words, when the <Reference> that points to the <Manifest> is
created, the data that is actually digested is only the list of elements
inside <Manifest> and not the data that comprises these elements.

What this means in practice is that the validation of the data listed in
a <Manifest> is under application control. Certain circumstances may
exist where it is acceptable for an application under certain well-defined
circumstances, to accept as valid a signature with one or more references
that fail reference validation. For example, Listing 4-27 references two
reports. Let us assume that in the given application context, the receiving
application knows that these two reports are semantically equivalent but
are in different formats. It may be acceptable for the contents of one of the
report files to change and therefore fail reference validation, as long as the
other report remains unchanged. In this case, the application still has
enough information to continue processing and should not throw an
exception or halt due to a single reference validation failure. Other exam-
ples of usage for this type of feature include applications that use a large
number of <Reference> elements—it may be acceptable in this case for

XML Security142

Listing 4-27

An example
<Signature>
element that uses
a <Manifest>

<Signature Id="ManifestExample">
<SignedInfo>

<Reference URI="#ReportList"
Type="http://www.w3.org/2000/09/xmldsig#Manifest">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>545x3rVEyOWvKfMup9NbeTujUk=</DigestValue>

</Reference>
</SignedInfo>
<Object>
<Manifest Id="ReportList">
<Reference URI="http://www.myserver.com/Report.pdf">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>20BvZvrVN498RfdUsAfgjk7h4bs=</DigestValue>

</Reference>
<Reference URI="http://www.myserver.com/Report.gif">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>40NvZfDGFG7jnlLp/HF4p7h7gh=</DigestValue>

</Reference>
</Manifest>

</Object>
...
</Signature>

04_CH04/DournaeeX 1/24/02 10:31 AM Page 142

a subset of the <Reference> elements to fail the digest check if an appro-
priately large number of these <Reference> elements pass the digest
check.

The <Manifest> element also can provide an efficient means of allow-
ing for the prospect of multiple signers over a set of <Reference> ele-
ments. Certain application domains need contracts and electronic
documents that are disparate in their contents (for example, they contain
multiple types of data such as a mixture of text and graphics) and also
require multiple signers. To see the problem that <Manifest> tries to
solve, we can try to solve the problem without the use of the <Manifest>
element and ponder the results. Listing 4-28 shows the sequence of events
and <Signature> structures that are formed if three different people
attempt to sign three different <Reference> elements using three sepa-
rate signing keys.

The main problem is the redundancy of the <SignedInfo> elements.
Each <SignedInfo> element must be repeated for each XML Signature.
In the example, this might not seem like a major issue, but when
the <SignedInfo> element grows to hundreds or thousands of
<Reference> elements, potential exists for a lot of wasted space. Em-
ploying the <Manifest> element can reduce this redundancy. The
<Manifest> element can be used as a sort of global resource list that can
be referenced by any number of <Signature> elements. Instead of the
signatures signing a duplicate <SignedInfo>, each signature signs the
contents of a <Manifest> element. The only caveat is that because a
<Manifest> element is usually (but not necessarily) a part of some par-
ent <Signature> block (it resides inside an <Object> element), the
signing may not be perfectly symmetric. The resulting structure still
implies that the <Signature> element that contains the <Manifest>
element is more significant than the others in some way, but this result is
much better than the duplication shown in Listing 4-28. Listing 4-29
shows how the <Manifest> element can be used in the creation of a sig-
nature with multiple signers and multiple documents.

The resulting signature in Listing 4-29 is more efficient than
that shown in Listing 4-28. The signature with the Id value of
"EfficientSignature1" will usually be generated first, because it
houses the <Manifest> element. The three <Signature> elements
shown are at the same nesting level and can appear within a single XML
document. Each separate <Signature> element has an attribute refer-
ence to "ThreeReferences" that ultimately refers to the <Manifest>
element inside the first signature element shown.

143Chapter 4 Introduction to XML Digital Signatures

04_CH04/DournaeeX 1/24/02 10:31 AM Page 143

Chapter Summary
At this point, the reader should have a good understanding of the syntax
used to express XML Signatures. We started with some abstract defini-
tions to provide a foundation for the nature of XML Signatures, how
they are generated, and what they mean. We went through each of the
elements in a systematic fashion and showed examples of their use. An
XML Signature begins with a parent <Signature> element that pro-
vides structure and an identifier for the signature. The next element is

XML Security144

Listing 4-28

Multiple signers
and multiple
references
without the use of
<Manifest>

Step 1: The first signer collects the necessary references and signs
them.

<Signature Id="InefficientSignature1">
<SignedInfo>
<Reference URI="#reference1">...</Reference>
<Reference URI="#reference2">...</Reference>
<Reference URI="#reference3">...</Reference>

</SignedInfo>
<SignatureValue> ... </SignatureValue>

</Signature>

Step 2: The second signer needs to sign the same information.

<Signature Id="InefficientSignature2">
<SignedInfo>
<Reference URI="#reference1">...</Reference>
<Reference URI="#reference2">...</Reference>
<Reference URI="#reference3">...</Reference>

</SignedInfo>
<SignatureValue> ... </SignatureValue>

</Signature>

Step 3: The third signer needs to sign the same information.

<Signature Id="InefficientSignature3">
<SignedInfo>
<Reference URI="#reference1">...</Reference>
<Reference URI="#reference2">...</Reference>
<Reference URI="#reference3">...</Reference>

</SignedInfo>
<SignatureValue> ... </SignatureValue>

</Signature>

04_CH04/DournaeeX 1/24/02 10:31 AM Page 144

145Chapter 4 Introduction to XML Digital Signatures

Listing 4-29

The use of
<Manifest> with
multiple signers
and multiple
documents

<Signature Id="EfficientSignature1">
<SignedInfo>
<Reference URI="#ThreeReferences"
Type="http://www.w3.org/2000/09/xmldsig#Manifest">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>725x3fVasdfvBGFGjhjyDSFvUk=</DigestValue>
</Reference>

</SignedInfo>
<SignatureValue> ... </SignatureValue> <!-- From signer #1-->
<Manifest Id="ThreeReferences">
<Reference>
...
</Reference>
<Reference>
...
</Reference>
<Reference>
...
</Reference>

</Manifest>
...
</Signature>

<!-- Here comes the second signature -->

<Signature Id="EfficientSignature2">
<SignedInfo>
<Reference URI="#ThreeReferences"
Type="http://www.w3.org/2000/09/xmldsig#Manifest">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>725x3fVasdfvBGFGjhjyDSFvUk=</DigestValue>
</Reference>

</SignedInfo>
<SignatureValue> ... </SignatureValue> <!-- From signer #2-->

...
</Signature>
<!-- Here comes the third signature -->

<Signature Id="EfficientSignature3">
<SignedInfo>
<Reference URI="#ThreeReferences"
Type="http://www.w3.org/2000/09/xmldsig#Manifest">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>725x3fVasdfvBGFGjhjyDSFvUk=</DigestValue>
</Reference>

</SignedInfo>
<SignatureValue> ... </SignatureValue> <!-- From signer #3-->

...
</Signature>

04_CH04/DournaeeX 1/24/02 10:31 AM Page 145

the <SignedInfo> element—the list of things that we are going to sign,
the signed information. Specific data streams to digest are denoted by
<Reference> elements, and URI syntax is used to specify this stream.
We also saw how the �KeyInfo� element can be used to help facilitate
the automatic processing of XML Signatures by providing a mechanism
for identifying verification key material. Finally, we ended with discus-
sion of the <Object> element, a generic container for any type of data
object. Two specific types defined by the XML Signature recommenda-
tion are useful for inclusion inside an <Object> element, <Signature-
Properties>, and <Manifest>. The <SignatureProperties>
element is a convenient, predefined container for signature assertions.
This element contains assertions about the signature that it points to.
These assertions are useful for determining additional trust semantics
over and above what is provided by mere signature validation and data
integrity. The <Manifest> element is used to solve two problems: it
appropriates reference validation to the application domain and pro-
vides a convenient means for multiple signers to sign multiple docu-
ments. Without the <Manifest> element, the resulting signature is
larger, has redundant semantics, and incurs a performance penalty dur-
ing creation and verification.

XML Security146

04_CH04/DournaeeX 1/24/02 10:31 AM Page 146

